
Table of Contents

Copyright.. 1
1. Introduction.. 2

Part I: Foundations.. 9
2. Getting Started... 9
3. Modeling users... 44
4. Registering users... 69
5. Getting started with testing.. 110
6. Logging in and out... 155
7. Advanced login.. 219
8. Updating user information.. 277

Part II: Building a social network... 312
9. Personal profiles.. 312
10. Community... 373
11. Searching and browsing.. 399
12. Avatars... 446
13. Email.. 474
14. Friendships.. 501
15. RESTful blogs.. 534
16. Blog comments with Ajax... 584
17. What next?... 614

RailsSpace: Building a Social Networking Website with Ruby on Rails

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital letters
or in all capitals.
The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:
 U. S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com
For sales outside the U. S., please contact:
 International Sales
 international@pearsoned.com
Visit us on the Web: www.awprofessional.com
Library of Congress Cataloging-in-Publication Data
Copyright © 2007 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:
 Pearson Education, Inc.
 Rights and Contracts Department
 One Lake Street
 Upper Saddle River, NJ 07458
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, June 2007

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 1 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #833378

http://safari.oreilly.com/mailto:corpsales@pearsontechgroup.com
http://safari.oreilly.com/mailto:international@pearsoned.com
http://www.awprofessional.com

1. Introduction

RailsSpace teaches you Ruby on Rails by developing a real-world application: RailsSpace, a
social networking website aimed at the Rails community itself. We take you step-by-step,
from the virtually static front page, through user registration and authentication, up to a
highly dynamic site with user profiles, image upload, simple blogs, full-text and geographical
search, and a friendship request system. Though certainly not intended as a serious
competitor to the social networking heavyweights, RailsSpace is not a toy; it's designed to
show how to use Rails to make a web application suitable for deployment into a production
environment.

1.1. Why Rails?
Ruby on Rails is a tool for making web applications. And it's freakishly good at it.
If you're reading this (which, evidently, you are), you're probably wondering what makes Rails
so special. When you ask a programmer who has already fallen in love with Rails, maybe he'll
tell you it's "agile", and you'll have to read up on what that means to coders. Or maybe you'll
be bombarded by a list of acronyms like ORM, MVC, or DRY. While these are all cool features
of Ruby on Rails, the real reason Rails rocks is not about vocabulary; it's about the philosophy
of efficient design.
There's that word: design—it's a slippery concept, yet unmistakable. Good design is like
pornography: you know it when you see it. Rails is like very, very good pornography. What
makes the design of Rails so good is difficult to pin down, but we'll do our best. We think the
heart of it is free productivity.

1.1.1. Productivity Wants to be Free
The short, short version of free productivity is that Rails has an eerie ability to anticipate your
needs as a web programmer. That's not very concrete, though, so let's get a flavor for the
free productivity Rails provides by looking at a list of examples. Not all of these will make
sense to you right now, but they should be able to help you develop an intuition for the kinds
of things Rails is good at.

- Ruby: Rails applications, as well as Rails itself, are written in Ruby, a dynamic, object-
oriented programming language. Ruby comes out of the Perl tradition, and Yukihiro
"Matz" Matsumoto, the creator of Ruby, calls it "a better Perl than Perl". In our experience,
most programmers with exposure to both languages agree. We'd add that, for web

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 2 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

programming, embedded Ruby (ERb) is a better PHP than PHP. Being able to tap into
the power and elegance of Ruby is a major advantage of Rails.
- Mapping of database tables to Ruby objects: There are no messy SQL[1] calls in most
Rails applications—instead you'll find Ruby objects. Rails does the dirty database work
behind the scenes. (If, by some chance, you do want to execute some raw SQL, Rails lets
you do that too.)

[1] SQL, or Structured Query Language, is the language of relational databases.

- Automatic conversion of data models into HTML and back: There's seamless
integration between the code for modeling objects in your system and the code to
display them to the user. This is nowhere clearer than in data validations; for example,
if your data model requires users to put in an email address, but the user submits a form
without one, Rails automatically catches the error and puts it in a variable for display
back to the user.
- Built-in support for automated testing of data models and web pages: Rails makes
it easy to write test suites that verify the integrity of your data model and the correctness
of the pages on your site, allowing you to be confident that changes to your code will
not break your application.
- Database-independent creation and alteration of database tables: Rails
migrations makes it easy to create your data models, make changes to them, and roll
them back if necessary, all in a way that makes it possible to use the same model for
many different databases.
- Everything, everything, everything in pure Ruby: Virtually everything in a typical
Rails application is written in Ruby, which means you always have access to a full-
strength programming language, and learning something once means you can use it
everywhere.

1.1.2. This Productivity Ain't Free
Now that we've given a sense of what free productivity is, it's important to explain what free
productivity is not. Many frameworks come with lots of built-in functionality: a slick
administrative interface, fancy role-based authentication and authorization, or the ability to
write certain applications with virtually no code. Even Rails has this capability; a feature called
scaffolding renders certain kinds of form-database interactions trivial—leading, among other
things, to the infamous "15-minute blog engine"[2].

[2]http://media.rubyonrails.org/video/rails_take2_with_sound.mov

That's not free productivity. Built-in authentication or 15-minute blog engines might make
for great marketing, but between us friends we can probably agree that any serious software
application is going to take more than fifteen minutes, no matter how brilliant the framework.
Don't get us wrong; if, by some chance, the application you have in mind is rendered trivial
by some existing framework, by all means use it. But if, as is more likely, you want to build

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 3 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://media.rubyonrails.org/video/rails_take2_with_sound.mov

something new, you need a framework that will help you when you need it and will get out
of your way when you don't. You need a tool that will help you realize your vision; a tool
flexible enough to change as your vision changes; a tool which, in the end, mutates into a
new framework, one that feels as if it were custom-made to write your exact application.
This is where Rails excels. Rails is great at making custom applications—Rails helps you make
the application you want. You don't switch to Rails because of the cool message board or
blog software available. You switch because the process of creating your own entirely custom
apps is so much easier using Rails.

1.2. Why This Book?
There's a tension in any educational book between the two extremes of pure tutorial and
pure reference. We land firmly on the tutorial side of this spectrum, which has many
advantages. Because our application is real, you get to learn Rails as it is actually used. You'll
see for yourself all the great ways that Rails makes writing web applications easier, from its
elegant model-view-controller architecture to the brilliance of embedded Ruby. You also get
the advantage of artful repetition: you see the most important ideas the most. The result is
learning by osmosis.
In the process of building RailsSpace, we'll also see how Rails makes it easy to write automated
tests to make sure our application does what we wanted it to do. Because of our tutorial
approach, we will be able to develop the tests incrementally in parallel with the application,
just as you do (or should do) in real life. As our application evolves, you'll see how great having
a test suite is: whenever we modify a feature or add a new one, we can run the tests to make
sure that we haven't broken some other part of the application.
Of course, while good for learning, a tutorial approach is not as good for looking things up.
As a counterbalance to RailsSpace, we recommend Agile Web Development with Rails (second
edition) by Dave Thomas and David Heinemeier Hansson, the original introduction to Rails.
AWDwR contains a wealth of reference material documenting most aspects of the Rails
framework. For learning Ruby we recommend Programming Ruby by Dave Thomas and The
Ruby Way by Hal Fulton.

1.3. Who Should Read This Book?
Since you're reading this, the chances are good that you should read this book.
RailsSpace is an introductory book, so we don't assume any knowledge of the Ruby
programming language or of the Rails framework. Of course, any previous exposure to either
will be beneficial. Even if you have some prior experience with Rails, we hope you can learn
something from our book, especially since we use several features (such as migrations, form
generators, and Ajax support) introduced in the more recent releases of Rails.
To get the most out of RailsSpace, you should probably know at least one programming
language, and familiarity with object-oriented programming would be especially helpful.
Java is probably sufficient background[3], and it's even better if you are familiar with a

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 4 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

dynamically typed language such as Perl, Python, or PHP (or Ruby!). It would be especially
good if you've used one of these languages to make dynamic web sites. Some exposure to
JavaScript and Cascading Style Sheets (CSS) would also be good. At the very least, you should
be familiar with making static web sites using HTML. Finally, we assume a certain level of
computer sophistication, so that when we say "Go download MySQL and install it" you're
confident that (given enough time and coffee) you can probably do it, even if you've never
installed a database before.

[3] If Java is the only programming language you know, you might get tripped up by the lack of static typing in Ruby. If you find yourself freaking out, just take a deep breath,
and try to have faith that dynamic typing works.

All of these supposed prerequisites are really beside the point, though. By far the most
important factor is your enthusiasm for learning how to make web applications. If you're
excited about putting something cool on the web, this book is for you, no matter what your
background is.

1.3.1. How to Read This Book
RailsSpace is designed to be read from start to finish, and you'll get the most out of it if you
code along with us, but we've designed the book to be instructive and interesting even if
you're not sitting in front of the computer. Also, it's important to be patient. If you don't get
something right away, keep pressing forward, and give the ideas a little time to sink in. You'll
be amazed at how something that confuses you at the beginning of a chapter will seem trivial
by the end. You're training your personal neural network how to recognize Ruby on Rails
patterns, and there's no substitute for practice and perseverance.

1.3.2. How to watch this book
The accompanying website for this book can be found at
http://RailsSpace.com/book/
There you'll find errata, sample data, and downloadable source code for RailsSpace. You'll
also find links to screencasts for each chapter—narrated movies of the book's source code
coming to life.

1.4. A couple of Rails stories
We've given you a bunch of reasons why Rails rocks, but there's no substitute for a couple of
good old-fashioned testimonials. These are our personal roads to Rails.

1.4.1. Aure
Way back in 1994 some friends and I in the Graduate Aeronautical Laboratories at Caltech
discovered that we had a department webserver that would serve our own content at /
~user_name/ URLs. We started out competing with each other for hits and instead of personal
sites we put up content about our favorite musicians and airplanes. One of us was the

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 5 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://RailsSpace.com/book/

teaching assistant for the lab and had control of the ~ta account. We re-christened the initials
to stand for "The Asylum" and instead of competing, we pooled our resources to build a
"crazy" place on the web where anyone could log on and contribute content. Some of the
apps we created were a public bookmarks repository (precursor to del.icio.us), a public
writing forum (precursor to wikis), and a web based Lite-Brite emulator and gallery (sort of a
primitive, single-celled ancestor to Flickr!).
We gained a lot of attention for these sites and soon film studios and record companies were
calling the lab tracking us down to hire us to build dynamic websites for them. It was certainly
awkward to get phone calls from Universal Pictures while your Ph.D. thesis advisor was in
the lab so we started a business and opened an office with a phone number of its very own.
We spent a few years building custom websites in Perl/CGI while getting our degrees (which
we all managed to do, take that you Yahoo! millionaire Stanford dropouts!). Slowly the stress
of building websites from scratch in Perl wore us out and the company disbanded. I looked
back at the websites and realized that many of them were very similar, so I began offering
standard web components to my clients. Meanwhile, Philip Greenspun was running
Photo.net and getting many requests from people wanting the code the site ran on. Philip
assembled his friends to beef up the Photo.net code and together we founded ArsDigita and
open-sourced our code as ACS (ArsDigita Community System), comprised of standard web
components and written mostly in Tcl. We used ACS to get exposure amongst poor
developers, which led us to be found by rich companies who wanted customizations to the
toolkit. Unfortunately, venture capitalists also eyed ArsDigita and once we accepted their
money they also had influence; you can read about what happened after that on
fuckedcompany.com.
Even with ArsDigita gone from the landscape, the toolkit lived on as "OpenACS" at
openacs.org. But, as an independent contractor, could I really convince my clients that a
toolkit started by a defunct company was definitely a long term solution? Also, I was pretty
sick and tired of programming in Tcl, so I turned to the prettiest language I knew—Python.
That pretty much meant using Zope, and at first Zope was awesome. Indeed, there are still
some applications for which Zope is a great choice. But Zope has many annoyances as well,
and my clients yearned for standard version control, file system access, and better relational
database access.
One of my (favorite) ex-employees was now working for Caltech and one day sent me an
email about some emerging frameworks she was considering instead of Zope for the next
project. Django and Ruby on Rails were on her list, and after a few hours of research I knew
Zope was history. Initially I leaned towards Django because it was in Python, but Ruby on
Rails was a bit further along, and it had one thing that Django will never have—David
Heinemeier Hansson, the creator of Rails. From my experience with ArsDigita and Philip
Greenspun I knew the importance of having a compelling, intelligent, and opinionated
central figure representing the framework. David, back then, and through at least the time
of this writing, has prescribed the philosophy of what Rails is and what it is not.
While DHH is its "creator", Rails clearly is the product of the evolution of web application
development. Here's what struck me about Rails:

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 6 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

- Ruby, mostly
Web application development always requires some mastery of many fields. You're
going to have to know at least a little about templating languages, database access, and
procedural programming. But, there's no denying it takes energy to constantly switch
back and forth between languages, especially when languages mix within one file. Rails
minimizes this—templating language: Ruby, database access: Ruby (mostly), procedural
programming: Ruby (duh).
- Data modeling, improved
The old way I started a project was to brainstorm everything that might be needed and
write a data model in SQL that would hold the final state of the data. Then I would have
to write the code to populate the database tables and write the error detection to
prevent bad data from going into the database. With Rails migrations, I can now
incrementally augment the data model, and with validations I write rules that almost
automatically show up in my web application as error reports. Also, migrations are
database agnostic, so I don't have to write a new SQL file for the various available
databases.

Oh, and there are many more things I have learned about Rails that I love, but frankly, you
don't need a long list of great things about Rails to know it's for you. In fact, if you need a
long list, then maybe you're not convinced. It's like when I bought my 2001 Nissan Frontier
truck: it could carry my dog, it was fast, and it looks like a spaceship—sold!
With Ruby on Rails I can offer a client a site that is completely customized for their needs
while still being fun for me to program in. Everyone is happy!

1.4.2. Michael
I was in college when the World Wide Web exploded onto the scene, and, even though I had
some programming background, I was always intimidated by people who knew how to
program for the web.
While I was at Caltech for graduate school, my friend Sumit Daftuar and I ran a local NCAA
basketball tournament pool, which initially involved a small but important web component.
Sumit used a simple Perl script to generate the results after each round of the tournament,
which he posted to a website. Even though it was ridiculously simple, people loved it. I had
done a lot of serious scientific computing for my physics research, but I was sick and tired of
not knowing how to program for the web, so in 2001 I offered to make a full web interface
for our local pool, complete with bracket entry and scoring reports. I had played with Perl
and CGI a bit, but by that point PHP had matured significantly, so I went with that.
I reasoned that this NCAA tournament project would force me to learn web development,
and (several 20-hour days later) it did. As the size of my projects got bigger, though, and as
I learned more computer languages, I became increasingly dissatisfied with PHP, which I
found inelegant. After graduating, Sumit and I had started a company that ran unique weekly
fantasy sports games, as well as an improved version of our NCAA site (called
BracketManager); I didn't want to use PHP, so I started looking around for something new. I

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 7 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

had learned Perl and Python in the course of my Ph.D. research, so I looked at several
frameworks in those languages.
I eventually settled on Zope, which is written in Python, even though it wasn't particularly
well-suited for our primary purpose—namely, writing a large custom web application. Like
many frameworks, Zope uses a watered-down template language to generate HTML, but
many web applications (including ours) generate such complicated HTML that they really
need a full-strength language under the hood. We ended up writing most of our HTML in
pure Python and coupling it to Zope using "external methods", which got the job done but
were rather cumbersome. I also found Zope's documentation to be spotty at best, due in
large part to Zope's relatively small user base. Finally, Zope has weak support for relational
databases; in particular, the Zope MySQL database adapter provided no support for
generating the often comically verbose queries required by SQL, forcing me to write a custom
MySQL library in Python.
Despite all these problems with Zope, Python is so much better than PHP that it was worth
the trouble. Unfortunately, our fantasy games never reached a critical mass, and the final
straw came when the NFL Players Association started (and the MLB Players Association
threatened) to sue any fantasy sports companies using the players' names without a license.
Unable to get licenses, we decided to shut the company down. This was unfortunate, but it
did give me a chance finally to abandon my Zope codebase and take a look at a new
framework I had been reading about called Ruby on Rails. I had a mental checklist of things
I needed in a web development framework, and I was curious to see if Rails might meet those
needs.
During all this time, I had kept in touch with Aure Prochazka, a tall, quiet, scruffy-looking guy
I had met while singing in the Caltech Men's Glee Club. He seemed to know quite a bit about
web development, so back in my PHP days I talked with him a bit about that language. He'd
looked at it a little, he said, and it seemed fine. I talked to him maybe a year later, and he told
me that he had taken a good look at PHP and decided that it sucked; he had gone with Python
and Zope instead. I replied that I had also switched to Zope. After another year or so, I
mentioned that I had become dissatisfied with Zope and was looking at Ruby on Rails. He
replied that he had recently switched from Zope to Rails, and loved his new framework.
In an effort to jump-start my Rails education, I took a Pragmatic Studio course offered by
Dave Thomas and Mike Clark—spending my own hard-earned cash despite Mike's best
efforts to convince me not to take the class. I'm glad that Mike was not more persuasive,
because I sat in amazement as one item after another on my mental list got checked off:

- An elegant programming language with flexible data structures and powerful
abstractions: check
- Good documentation, with a relatively large (and rapidly growing) user base: check
- Mature relational database support, with a good object-relational mapping library:
check
- HTML-embedded templates with, for the love of God, a full-strength programming
language: check

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 8 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

After working on a few personal projects in Rails, and doing a Rails demo site for a friend's
company to show how it could replace their legacy Perl system, I was convinced that Rails
was the framework I had been searching for. When Aure asked me if I might be interested in
submitting a proposal to write a book on Rails with him, I leapt at the opportunity.
There's no turning back now. And there's no stopping Ruby on Rails.

Part I: Foundations

2. Getting Started

It's time to start building RailsSpace, a social networking website for Ruby on Rails enthusiasts
(and whoever else shows up). Eventually, RailsSpace will have many of the features associated
with popular social networks such as Facebook and MySpace, with searchable user profiles,
an email system, and friends lists. The first part of the book lays the foundation by developing
a system for registration, login, and authentication. This system is essential for our purposes,
but it's also needed for virtually any user-based web application. In the second part, we'll
build a social network on this foundation. In the process of making this specific type of
application, we'll develop many general techniques useful for building other kinds of
websites as well.
In this chapter, we'll get started with the application by making the front page of our site,
together with a couple of other static pages. Much of what we do in this chapter could be
done quite easily with plain HTML files, but even in this extremely simple case Rails still proves
surprisingly convenient. It also makes for a gentle introduction to some of the core concepts
behind Rails, including Embedded Ruby and the model-view-controller architecture.

2.1. Preliminaries

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 9 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Choosing a platform

Although we suppose there are alternatives, everyone we know uses either
Windows, Macintosh, or Linux for Rails development. Your choice of platform will
probably be dictated more by what you are currently familiar with than anything
else. In RailsSpace, we strive to support all three of these platforms. Your humble
authors use Mac (Aure) and Linux (Michael), and one of us (Michael) learned to
develop Rails apps on Windows specifically to support this book. Because we like
the Apple look, all screenshots in RailsSpace are from the Macintosh platform, but
we can report from personal experience that Rails is unambiguously cross-
platform; you can build great Rails applications no matter which operating system
you choose.

We bet that many of you have, in your excitement, already installed Rails, but if you haven't
(or if you're using an older version[1]) you should do that now. Once you've chosen a platform
(see box), head over to the Ruby on Rails download page (http://www.rubyonrails.org/
down), for instructions on how to install Rails. There are many different ways to get rolling
with Rails; here is one basic sequence:

[1] For this book, you should have Ruby 1.8.5 or later and Rails 1.2 or later.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 10 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://www.rubyonrails.org/down
http://www.rubyonrails.org/down

1. Install Ruby

- Windows: Download the Windows installer (the first .exe file at http://
rubyforge.org/frs/?group_id=167) and double-click on it.
- Linux: Download the Ruby source code from http://www.ruby-lang.org/en/
downloads/. Linux users, you know the drill: extract with

$ tar zxf <filename>

and install with

$./configure; make; sudo make install

If you don't have sudo[2] enabled, you'll have to log in as root for the final step:

[2] How do you do the sudo that you do so well?

$./configure

$ make

$ su

make install

- OS X: There are some issues with the Ruby that ships with OS X 10.4, so you might
want to take a look at this[3]:

[3] Also consider Locomotive (http://locomotive.sourceforge.net/), a pre-packaged Rails bundle for OS X.

http://hivelogic.com/articles/2005/12/01/ruby_rails_lighttpd_mysql_tiger

2. Install RubyGems, the standard Ruby package manager

- Windows: Download the first RubyGems .zip file from http://rubyforge.org/
frs/?group_id=126 and unzip it, extracting the files to a directory on your local
disk. Using a command prompt (DOS window), navigate to the directory where
you extracted the files and run

> ruby setup.rb

- Linux and OS X: Download the first RubyGems .tgz file from http://
rubyforge.org/frs/?group_id=126, extract it, and run

$ ruby setup.rb

inside the source directory.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 11 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://rubyforge.org/frs/?group_id=167
http://rubyforge.org/frs/?group_id=167
http://www.ruby-lang.org/en/downloads/
http://www.ruby-lang.org/en/downloads/
http://locomotive.sourceforge.net/
http://rubyforge.org/frs/?group_id=126
http://rubyforge.org/frs/?group_id=126
http://rubyforge.org/frs/?group_id=126
http://rubyforge.org/frs/?group_id=126

3. Install Rails at the command line[4]:

[4] Throughout the rest of RailsSpace, we'll use > to indicate the prompt in a cross-platform manner; for Windows users, this will be the > in a command prompt
(DOS) window, while for Mac OS X and Linux users it will be the $ in a terminal window.

> gem install rails --include-dependencies

Now go get a cup of coffee while Rails and all of its associated files are automagically
installed.

2.1.1. Setting up your development environment
Your specific development environment would depend somewhat on the platform you
choose, but since Rails applications are written in Ruby at the very least you'll need a text
editor for writing source code. As we'll see, Rails projects have a lot of different files and
directories, so it's useful to have an editor or integrated development environment (IDE) able
to navigate the directory tree and switch between files quickly.
We particularly recommend RadRails[5], a free (as in beer and speech) cross-platform Rails IDE
based on Eclipse (which will be familiar to many Java developers out there). For Rails
developers working on OS X, the most popular choice seems to be TextMate[6], a very popular
text editor with lots of nice Rails macros and good directory navigation[7].

[5]http://www.radrails.org/

[6]http://macromates.com/

[7] Lamentably, TextMate is free in neither the beer nor the speech senses of the term.

If you've never done Rails development before, be sure to take some time to play around
with your new tools (whether they be RadRails, TextMate, or something else). You'll be
learning a lot of things at once here at the start, so be patient and have fun.

2.1.2. Running with rails
Now that you've installed Rails, it's time to get started with RailsSpace. Rails comes with a
program called (appropriately enough) rails that automatically creates a bunch of files
and directories to get you started with a new project. For a site with a name like RailsSpace
(written in CamelCase), the Rails convention is to create a project with the corresponding
name in underscore format (so CamelCase becomes camel_case); in our case that means
making rails_space:

> rails rails_space

The rails command creates lots of files and folders, which comprise a skeleton of your site
[8]. Let's take a look at it in our file browser (Fig. 2.1). One of the great things about Rails
applications is that they all share this common directory structure. It may look a little
overwhelming at first, but once you've spent a little time navigating the Rails directory tree

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 12 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://www.radrails.org/
http://macromates.com/

it will sink in fast. We've found that having the directory structure (depicted as a pie chart in
Fig. 2.2) decided for us eliminates a lot of headaches since we don't have to spend any time
agonizing about what to call our directories or where to put our new files. Moreover, the Rails
directory structure seems naturally derived from project development.

[8] If you are using RadRails, you should import the Rails project at this point (see box).

Figure 2.1. Top-level directory structure.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 13 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Figure 2.2. Rails, as a pie chart. (Mmm...pie.)

Importing projects into RadRails

Here's how to import a Rails project into RadRails:

1. Go to File -> New -> Rails -> Rails Project and click Next
2. Uncheck the Generate Rails application skeleton and Create
a WEBrick server boxes

3. Edit the default location if it is not the parent directory of your Rails project
(you will have to uncheck the box next to Use default location to
do this)

4. Enter the name of your project (rails_space in this case) in the box and
click Finish
An alternative to this is to skip the original rails rails_space
command and then follow the steps above without unchecking Generate
Rails application skeleton. In this case RadRails will run the
rails command automatically.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 14 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

In case it's not self-explanatory, we should note that all of the directories in this book will be
relative to the base site created by the rails command. For example, if your project
directory is created in /home/user/rails_space, app/views/index.rhtml
means /home/user/rails_space/app/views/index.rhtml.

2.1.3. Development Server
When developing Rails applications, the most common practice is to use a web server
designed specifically for development, run on your local machine.[9] The most important
quality of the development server is probably an immediate reloading of code, so that
changes to the application are immediately reflected on the website, which makes for the
short development-debug cycle.

[9] The specific server depends somewhat on your configuration and platform. Until recently, the development server was a lightweight HTTP server called WEBrick; nowadays
some installations instead use Mongrel, a production-quality server written specifically for Ruby. Either one works.

The development server can be started using a standard script[10]:

[10] Since the server takes over the window in which it is started, we recommend opening a new terminal to act as a dedicated server window.

> cd rails_space

> ruby script/server

=> Booting Mongrel (use 'script/server webrick' to force WEBrick)

=> Rails application starting on http://0.0.0.0:3000

=> Call with -d to detach

=> Ctrl-C to shutdown server

** Starting Mongrel listening at 0.0.0.0:3000

** Starting Rails with development environment...

** Rails loaded.

** Loading any Rails specific GemPlugins

** Signals ready. TERM => stop. USR2 => restart. INT => stop (no restart).

** Rails signals registered. HUP => reload (without restart). It might not work well.

** Mongrel available at 0.0.0.0:3000

** Use CTRL-C to stop.

(Under Linux or Macintosh OS X, you can omit the ruby command, but it does no harm, so
we included it for the convenience of Windows users typing commands into their DOS
terminals.)
The development server runs on port 3000[11] of localhost by default, so you can access
the Rails start page at http://localhost:3000/. You should see something like the screenshot

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 15 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

in Fig. 2.3. Clicking on the "About your application's environment" link shows information
about your site's local environment (Fig. 2.4).

[11] The standard port number for websites is port 80, but special privileges are needed to run on low-numbered ports, so the Rails development server runs on port 3000
by default.

Figure 2.3. Here's proof that your server is running.

[View full size image]

Figure 2.4. Information about the Ruby on Rails environment.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 16 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyX3N0dF9wbGVzdGgyX2MvX2Fyc2Uxci5uX2NhajNpcGc-
http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyX3N0dF9wbGVzdGgyX2MvX2Fyc2Uyci5uX2NhajRpcGc-

2.2. Our First Pages
Now that we've got those boring but necessary preliminaries out of the way, it's time to get
started on RailsSpace. Our immediate goal is to make the front page of our site, so that if we
type http://localhost.com:3000/ it says something like "Welcome to RailsSpace!". Since we
know that we'll want more than just a front page, we'll add an "About Us" and "Help" page
as well.

2.2.1. Generating a Controller
The first step in creating pages for our site is to make a site controller. The controller is the C
in MVC, the design architecture used by Rails (see box); you can think of the controller as a
container for a group of related pages. Rails controllers are pure Ruby code, with Ruby
functions, called actions, which correspond roughly to individual pages. (Don't worry if this
seems overly abstract at this point; the only real way to understand the MVC architecture is
to absorb it by osmosis, and that might take some time.)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 17 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Easy as 1-2-3

Rails uses the model-view-controller architecture, also known as MVC. Models
contain "business logic", including representations of the objects (users, personal
data, friendships, etc.) used by your web application; models are responsible for
communicating with the back-end data store, typically a relational database such
as MySQL. Views are responsible for what the user actually sees; they typically
contain a mix of raw HTML and an embedded template language for generating
dynamic content. Controllers are responsible for figuring out what to do with user
input: they handle incoming browser requests, call the appropriate functions on
model objects if necessary, and—through the actions that live inside controllers
—render views into pure HTML for return to the browser. Together, these three
components make for a natural division of labor in web applications.

Rails comes with a convenient script called generate, which we can use to make our first
controller. The generate command lives in the script directory of our project, so to generate
the controller you can type[12]

[12] N.B. You can add the flag --help to the end of any Rails script to display help information.

> ruby script/generate controller <ControllerName> [optional actions]

Let's call our generic Site controller Site. While we're at it, let's generate some of the actions
we know we'll need. We'll start with an index action for our front page[13], together with
about and help actions for the two other pages on our (proto)site. Making sure that you're
still in your new rails_space directory, create the Site controller and the actions as follows:

[13] The name "index" is based on the (somewhat obscure) convention of using index.html as the default page on static HTML sites.

> ruby script/generate controller Site index about help

exists app/controllers/

exists app/helpers/

create app/views/site

exists test/functional/

create app/controllers/site_controller.rb

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 18 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Figure 2.5. Simple representation of the MVC architecture.

create test/functional/site_controller_test.rb

create app/helpers/site_helper.rb

create app/views/site/index.rhtml

create app/views/site/about.rhtml

create app/views/site/help.rhtml

Note that generate creates a bunch of files[14]. Probably the most important is a controller
corresponding to our controller name, app/controllers/site_controller.rb,
which is a Ruby file (hence the .rb filename extension). It also makes an rhtml ("Ruby HTML")
file for each action (index.rhtml, about.rhtml, and help.rhtml) in the app/views/
site/ directory; these rhtml ("Ruby HTML") files are templates for our site's pages (Section
2.3). The generate script also creates a testing script (test/functional/
site_controller_test.rb) which we'll learn more about in Chapter 5, and a site helper
file (site_helper.rb), which will contain any utility functions that we write in the course
of filling in the pages on our site (the first example of which is in Section 4.4.1).

[14] In case you ever need to undo the work done by generate, you can use ruby script/destroy controller <ControllerName>. That's certainly a lot easier
than deleting a bunch of files by hand.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 19 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Figure 2.6. Tree view of the files we created with generate.

2.2.2. The Site Controller
Now that we've generated it, let's take a look at the Site controller:
file: app/controllers/site_controller.rb

class SiteController < ApplicationController

def index

end

def about

end

def help

end

end

This is our first example of a Ruby file. Each of the actions we wanted (index, about, and
help) shows up as a blank Ruby function (defined using the def keyword)[15]. Eventually,
we'll fill in these functions, but for now we'll leave them alone.

[15] If you ever want to add more actions to a particular controller, don't try to do it using generate; just add another function definition for each new action by editing
the controller file directly.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 20 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Perhaps the most important feature of this file is the strange-looking line

class SiteController < ApplicationController

Ruby uses the < character to indicate inheritance; what this means is that our Site controller
automatically has all the functionality of ApplicationController. But what does that mean?
Let's take a look at the Application controller file:
file: app/controllers/application.rb

class ApplicationController < ActionController::Base

.

.

.

end

Now we've gotten to the bottom of it. ActionController::Base is a Ruby class defined
by Rails itself which contains functions for performing many common web-programming
tasks, such as accessing form parameters and session variables. The top controller
(ApplicationController) for our application inherits from this base class, thereby
inheriting all of that functionality; SiteController, in turn, inherits from
ApplicationController. We won't need any of the functions or variables defined by
ActionController::Base in this chapter, but starting in Chapter 3 we will see many
examples. Impatient readers can dig into ActionController::Base by looking it up in
the Rails API at http://api.rubyonrails.org/classes/ActionController/Base.html (see box).

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 21 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://api.rubyonrails.org/classes/ActionController/Base.html

The Rails API

The entire Rails API (application programming interface) is available online at

http://api.rubyonrails.org/

When programming Rails, you may find that (like us) you consult the API
frequently. To search for something in the API (such as
ActionController::Base), we usually just use the "find" feature of our
browsers.
By the way, if you want the have the Rails API and other documentation available
on your local machine, install the docs using[16]

> gem rdoc --all

and then start the gem documentation server using

> gem_server

Now all of the documentation is available on your local machine on port 8808:

http://localhost:8808

[16] Warning: this takes a long time.

2.2.3. Rails URLs
Even though we've hardly done anything, we actually already have a working site, which we
can see at http://localhost:3000/site/index (Fig. 2.7). Notice that the URL contains the base
of our site (i.e., localhost:3000 when in development mode) followed by the controller
(site) and the action (index). Many Rails URLs follow this general form, which we can write
abstractly as

http://localhost:3000/<controller>/<action>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 22 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Figure 2.7. The default view for the Site controller.

From this template, you can infer that http://localhost:3000/site/index goes to the index
action in the site controller. In our case, since index is the default action, we can omit its
name—that is, http://localhost:3000/site/index and http://localhost:3000/site go to the same
page.
At this point, if you're used to static HTML pages or even dynamic pages generated by, say,
PHP or ASP, you may be wondering why we write http://localhost:3000/site/index instead of
http://localhost:3000/site/index.rhtml[17]. There are several reasons. First, it's probably a
mistake to expose our choice of web application framework by putting rhtml in the URL. Rails
programmers (among others) consider the appearance of the file name extension (say, .php
or .asp) in the URL to be a design flaw, since those site's users almost certainly don't care
about which technology was used to make the site; moreover, any site that decides to convert
from ASP to PHP will regret having to break all its former URLs[18]. Also, we want to think of
the index as something more general than a web page; since Rails is designed to make web
applications, it's likely that many of our URLs will lead to some sort of calculation or database
call. We think of our URLs as pieces of a computer program rather than simply pages on a
website.

[17] Note that the old-school index page, index.html, doesn't exist at all. Trying to hit that page in the context of a Rails application will give an error.

[18] Not that we would ever convert to something other than Rails, but why tie yourself down?

There's also an aesthetic aspect to Rails URLs: the Rails community values "pretty URLs", with
human-readable and -guessable words in the URL and without a lot of filename extensions
and punctuation mucking it up. An example of an ugly URL is something like[19]

[19] It may amuse you to learn that example.com is, by design, not a real site; example.com, example.org, and example.net are actually reserved for use in examples
just like this one (see http://www.rfc-editor.org/rfc/rfc2606.txt).

http://example.com/blog/post.asp?val=1047

This is just ugly[20]. If example.com used Rails, the URL would be

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 23 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://www.rfc-editor.org/rfc/rfc2606.txt

[20] It's possible to make these URLs pretty, but it typically requires digging into the webserver and using something such as the mod_rewrite module for Apache. That's
kind of a pain, and the profusion of .asp extensions on the web shows that even a minor annoyance can be enough to prevent people from doing something. In any case,
with Rails pretty URLs come for free.

http://example.com/blog/post/1047

In this URL you might guess that blog is a controller and post is the action. (We'll see in
Section 9.1.1 how Rails handles things like the 1047 at the end.) Much better, no?

2.2.4. Changing the Route
Of course, there are two major things wrong with our front page. First, we don't want the
URL to be http://localhost:3000/site; we want it to be http://localhost:3000/, so that the public
site will live at http://RailsSpace.com/. And second, we want the page to contain some
(possibly) useful information. Let's take care of the URL first.
The machinery that Rails uses to make nice URLs relies on a configuration file called
routes.rb. For our case, all we need to do is make the Site controller handle the root of
the site. The way to do this is to open the config/routes.rb file and uncomment[21] the
line

[21] Ruby (like Perl, Python, and Unix shell languages) uses the '#' character for comments.

map.connect '', :controller => "welcome"

and change it to this:

map.connect '', :controller => "site"

This should look like magic at this point (that is to say, this is probably confusing). Routing
requests is a fairly advanced topic, and it's unfortunate that we have to introduce it so early,
but we think it's important to make our URLs look good right from the start. (When we were
Rails newbies, it made us nervous to have http://localhost:3000/ be some funky default Rails
page rather than what we wanted it to be.) We'll talk more about routes in Section 9.1.1, and
we'll explain the syntax :controller => "site" in Section 2.4.3; for now, just take it on
faith. You'll see momentarily that it works.
Unfortunately, even with all that work we're not quite done, since Rails looks for a file called
index.html in the public directory. If that file is there, Rails will return the default page,
as seen in Fig. 2.3, so we have to delete it to get the behavior we want:

> rm public/index.html

2.3. Rails Views
We are finally ready to change the content of the index page by editing app/views/site/
index.rhtml, which is a Rails view (the V in MVC)[22]:

[22] Recall from the introduction that all the source code for RailsSpace is available for download at http://RailsSpace.com/book/.

file: app/views/site/index.rhtml

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 24 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://RailsSpace.com/
http://RailsSpace.com/book/

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<head>

<title>RailsSpace</title>

</head>

<body>

<h1>Welcome to RailsSpace!</h1>

<p>This is going to be the best site ever!</p>

</body>

</html>

Now the default page appears at http://localhost:3000/ with our own customized content
(Fig. 2.8).

Figure 2.8. Our front page.

2.3.1. Embedded Ruby
We mentioned rhtml files in our discussion of the generate script in Section 2.2, and
index.rhtml is our first concrete example. In general, rhtml files consist of HTML combined
with Embedded Ruby (ERb) commands. Our example is the simplest possible kind of rhtml
file—it's just static HTML. We will see a less trivial example containing some ERb in Section
2.4.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 25 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Since we've defined a couple of other actions, let's go ahead and flesh out their corresponding
views:
file: app/views/site/about.rhtml

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<head>

<title>About RailsSpace</title>

</head>

<body>

<h1>About Us</h1>

<p>RailsSpace is a social networking website for Ruby on Rails enthusiasts (and whoever
else shows up).</p>

</body>

</html>

file: app/views/site/help.rhtml
Figure 2.9. "About Us" page.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 26 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<head>

<title>RailsSpace Help</title>

</head>

<body>

<h1>Help</h1>

<p>This page will contain instructions and a frequently asked questions list.</p>

</body>

</html>

2.4. Layouts
So far, we haven't done anything that we couldn't do just as easily with static HTML files. You
might notice, though, that a lot of the HTML is the same in these three files. We can use Rails
to eliminate the repetition using layouts to handle the redundant boilerplate HTML on the
top and bottom of our pages. We simply create a new rhtml file in the app/views/
layouts/ directory and place the repeated code there. Then we add a magic word or two
(explained momentarily) to reconstruct the original pages. You can give the layout file any
name you please (see box), but Rails will find a layout automatically if it has the same name
as the controller:

Figure 2.10. Help page.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 27 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

file: app/views/layouts/site.rhtml
<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<head>

<title><%= @title %></title>

</head>

<body>

<%= @content_for_layout %>

</body>

</html>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 28 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Alternate layouts

To use a different layout for the Site controller, create a file called app/views/
layouts/different.rhtml for example, and then add a line after the
SiteController class declaration referring to it:
file: app/controllers/site_controller.rb

class SiteController < ApplicationController

layout "different"

.

.

.

end

We'll use this idea starting in Chapter 4 to reuse the site layout for the rest of
RailsSpace.
Another approach is to use a site-wide layout file defined at app/views/
layouts/application.rhtml and define custom layouts as needed.

Now we can pare down the views considerably:
file: app/views/site/index.rhtml

<h1>Welcome!</h1>

<p>This is going to be the best site ever!</p>

file: app/views/site/about.rhtml
<h1>About Us</h1>

<p>RailsSpace is a social networking website for Ruby on Rails enthusiasts (and whoever
else shows up).</p>

file: app/views/site/help.rhtml
<h1>Help</h1>

<p>This page will contain instructions and a frequently asked questions list.</p>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 29 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Keeping your code DRY?!?

In general, Ruby on Rails developers take particular pride in not repeating code.
This is not a new idea, of course; eliminating repetition by using appropriate
abstractions is as old as computer programming itself. But, from a cultural point
of view, Rails programmers are particularly vigorous supporters of code reuse.
There's even an acronym for the principle, which has gained some popularity in
Rails circles: DRY = Don't Repeat Yourself.
This laudable principle leads to some rather egregious abuses of the English
language, in phrases such as "Rails is a DRY framework" and "Now let's DRY out
our code." We'll try to avoid inflicting such violence upon our native tongue, but
we will not hesitate to use the many wonderful features that Ruby and Rails
provide to reduce duplication.

Notice how much less code there is now. Although programmer productivity is often
measured in lines of code produced per unit time, often the greatest productivity comes
from reducing code, which makes programs much more maintainable and extensible. (Still,
we don't recommend that you brag to your manager or client that you "wrote negative 1000
lines of code yesterday.")

2.4.1. ERb, Actions, and Instance Variables
The layout above introduces our first example of the ERb template language mentioned
briefly in Section 2.3.1. In rhtml files, wrapping an expression in <%=...%> evaluates the
expression as Ruby code and then inserts the resulting value into the page. For example, if
the variable @foo (pronounced "at foo") contains the string "bar", then <%= @foo %>
would insert the word "bar" into the file. (We'll explain the funny '@' symbol at the front of
the variable name later in this section.)
The real magic of the layout is in the line <%= @content_for_layout %>, which you
now know inserts the value of the variable @content_for_layout into the layout. But
where does this variable come from? When Rails processes the URL http://localhost:3000/
site/about/, it puts the results of processing about.rhtml into
@content_for_layout; in our case, @content_for_layout contains the string
"<h1>Help</h1>\n<p>This page will contain instructions and a
frequently asked questions list.</p>"[23]. Rails then processes the layout,
thereby substituting the content into the page at the appropriate place.[24]

[23] In Unix, the line break is represented as the newline character, which is written as \n.

[24] This isn't quite what happens; Rails uses a more advanced feature of Ruby called blocks to process templates. In fact, the currently favored method for implementing
layouts uses <%= yield %> in place of <%= @content_for_layout %>, which is a big hint to the Ruby cognoscenti that blocks are involved, since the yield keyword
is characteristic of blocks. We will switch to yield in future chapters, but for now @content_for_layout is much easier to understand (and in fact is probably still much
more common in Rails code than yield in this context).

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 30 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

A second example of ERb in our layout is <%= @title %>, but, unlike
@content_for_layout, @title is not created automatically by Rails. As you might
guess, we want @title to be a string with the title of the current page, but where does it
come from? We define @title in the actions inside the Site controller as follows:
file: app/controllers/site_controller.rb

class SiteController < ApplicationController

def index

@title = "RailsSpace"

end

def about

@title = "About RailsSpace"

end

def help

@title = "RailsSpace Help"

end

end

You've probably noticed by now that both of the variables we've seen inside Embedded Ruby
begin with the '@' symbol. This is no accident; a variable defined in the controller is
automatically available in the view (including the layout) as long as its name starts with '@'.
In Ruby, these are known as instance variables, but for our purposes their relevant property
is their availability in the view. We will see many examples of instance variables throughout
the book.

2.4.2. Recap: Slicing up a Page
Let's take a moment to review where we started and where we've gone. Consider, for
example, the help page, which started like this:
file: app/views/site/help.rhtml

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 31 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<head>

<title>RailsSpace Help</title>

</head>

<body>

<h1>Help</h1>

<p>This page will contain instructions and a frequently asked questions list.</p>

</body>

</html>

We've now effectively split this page into three different pieces:

- A title, which we've placed in the Site controller (app/controllers/
site_controller.rb)
- The HTML skeleton, which we've placed in the site layout (app/views/layouts/
site.rhtml)
- the body content, which has stayed in the view (app/views/site/help.rhtml)

This may seem like an awful lot of trouble, and it would be if there were only one page on
the site. But since we expect RailsSpace to have many pages, partitioning our application in
this way gives us a great deal of flexibility. For a concrete example, we need look no further
than the common task of adding site-wide navigation.

2.4.3. Adding Navigation
Having now used the layout to capture the structure common to each page, adding site-
wide navigation is simple, since any navigation links we add will automatically be included
on every page. We'll create these links using the Rails link_to function and separate them
using the vertical bar character ('|')[25]:

[25] These bars are just part of the HTML, and aren't part of the template language.

file: app/views/layouts/site.rhtml
<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 32 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<head>

<title><%= @title %></title>

</head>

<body>

<%= link_to("Home", { :action => "index" }) %> |

<%= link_to("About Us", { :action => "about" }) %> |

<%= link_to("Help", { :action => "help" }) %>

<%= @content_for_layout %>

</body>

</html>

This makes our front page look like Fig. 2.11.

Figure 2.11. A navigation bar now appears at the top of each page.

Note that we've created links to pages on our site using link_to, which is our first example
of a Rails function for HTML generation. Even this simple example introduces a lot of new
material, so let's break it down into bite-sized pieces.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 33 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

We know that code between <%= and %> is evaluated as Ruby code, and the value returned
is inserted into the page at that point; based on its name, you should be able to guess that
link_to is a function that returns a string corresponding to an HTML link tag a (also called
an anchor tag). The first argument to link_to is the text of the link as displayed in the
browser, so link_to("About Us") returns the string About Us.
That's not the right address, though; we need to tell link_to which action to use when
constructing the URL. For this purpose link_to takes a second, optional argument, which
is a Ruby hash.
Hashes are an essential part of Ruby and Rails, so let's take a moment to understand them.

2.4.4. Hashes
A hash (short for hash table), also called an associative array or a dictionary, is a data type
consisting of key-value pairs; you can think of a hash as a sort of generalized array, with the
index type not limited to integers. Probably the best way to understand hashes is to look at
a few examples using the interactive Ruby program irb[26]. We'll start with an empty hash
{}, try to access a nonexistent element, and then add several key-value pairs:

[26]irb comes bundled with Ruby; just run irb from the command line.

> irb

irb(main):001:0> h = {}
=> {} irb(main):002:0> h["foo"]
=> nil
irb(main):003:0> h["foo"] = "bar"
=> "bar"
irb(main):004:0> h["foo"]
=> "bar"
irb(main):005:0> h["baz"] = "quux"
=> "quux"
=> "about"
irb(main):006:0> h[17] = 123.5
=> 123.5
irb(main):007:0> h
=> {17=>123.5, "baz"=>"quux", "foo"=>"bar"}

Note that we access a hash value by putting the key in square brackets; if the hash doesn't
have a value corresponding to a particular key, it returns nil, which is a special Ruby value
for "nothing at all". We can also add elements to the hash using square brackets, as in h
["foo"] = "bar". If we type the name of the hash (h in this case), irb prints the key-
value pairs. Ruby hashes can contain multiple types; you probably recognize strings, integers,
and floating-point numbers in the examples above. Also note that hashes have no intrinsic
sense of order, so your version of irb might print out the key-value pairs in a different order.
Always having to build up hashes using the bracket notation would be cumbersome, so Ruby
lets us define a hash explicitly using curly braces and key-value pairs as follows[27]:

[27] The extra spaces at the beginning and end of the hash are unnecessary, but have become fairly standard in Rails code.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 34 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

irb(main):008:0> h = { :action => "help", :controller => "site" } => {:action=>"help", :
controller=>"site"}

Each key in this example is a symbol, which may be unfamiliar to many readers since few
languages have this type. Of course, it's just our luck that this is precisely the syntax that
occurs in link_to.

2.4.5. Symbols
A Ruby symbol is just a label, formed in the same way as a string except with a single colon
instead of quotes. Most languages use strings as labels, especially in hashes, but a string has
a lot of properties that have nothing to do with its role as a label—you can find a string's
length, access a substring, compare it to a regular expression, reverse it, etc. Ruby takes the
next logical step and creates a separate data type for labels; you can think of symbols as
strings without all those other unnecessary attributes. As a result, symbols can be compared
very quickly, whereas comparing strings requires that you walk down both strings character
by character. Efficient comparison makes symbols ideal for use as hash keys.

2.4.6. Polishing up link_to
We're now in a position to understand the expression

link_to("About Us", { :action => "about" })

The link_to function makes an HTML link tag by taking the string in its first argument and
putting it inside the a tag, and it constructs the appropriate URL defined by the optional hash
in its second argument, which it puts after the href inside the opening tag. In other words,

link_to("About Us", { :action => "about" }

returns the string

About Us

Since

<%= link_to("About Us", { :action => "about" }) %>

inserts the result of evaluating the enclosed Ruby code, once the rhtml has been processed
the source code for the home page appears as follows (this is what you see if you use the
"view source" feature of your browser):

 http://localhost:3000/

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 35 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<head>

<title>Welcome to RailsSpace!</title>

</head>

<body>

Home |

About Us |

Help

<h1>Welcome!</h1>

<p>This is going to be the best site ever!</p>

</body>

</html>

What link_to is doing may not seem too amazing at this stage, but it is actually constructing
the appropriate URL using rules set in the routes.rb file that we introduced in Section
2.2.4. This means that link_to is more flexible than hard-coding the URL; for example, if
we decided to change the address for "About Us" to about_us, we could use routes.rb
to ensure that a request for about would be handled by the about_us action. It is true,
though, that for this simple example hard-coding the address isn't difficult; the fact of the
matter is that using Ruby code rather than HTML to create links is a nearly universal Rails
convention—due in part to the flexibility mentioned above, to be sure, but it's also an
aesthetic judgment, a matter of style.

2.4.7. Some Matters of Style
Before leaving link_to, we should mention two more important matters of style. Several
aspects of Ruby syntax are optional, depending on context; in particular, parentheses are
optional in function calls, and curly braces are optional in hashes when they are the final
argument to a function. The usual style used by Rails programmers omits these optional
characters in many cases, including our link_to example. Although the code we produced
is perfectly valid, it is not idiomatically correct; most Rails programmers would write instead
file: app/views/layouts/site.rhtml

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 36 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<head>

<title><%= @title %></title>

</head>

<body>

<%= link_to "Home", :action => "index" %> |

<%= link_to "About Us", :action => "about" %> |

<%= link_to "Help", :action => "help" %>

<%= @content_for_layout %>

</body>

</html>

This is the convention we will use in this book.
We should also note that, in the context of Rails programming, "good style" is a moving target,
both because Rails is a young framework and because web development itself is a young
and rapidly changing field. Reflecting on the large number of code changes in the second
edition of Agile Web Development with Rails, Dave Thomas writes in the preface that "In the
time since the first book [i.e., the first edition] was released, we'd all gained a lot more
experience of just how to write a Rails application. Some stuff that seemed like a great idea
didn't work so well in practice, and other features that initially seemed peripheral turned out
to be significant." We expect this process to continue; as Rails evolves, the practices and
conventions constituting good Rails style will evolve as well.

2.4.8. Polishing Navigation
There is another reason to use Ruby to create links beyond those cited above: for a proper
navigation system, we shouldn't link to the page that is currently displayed. This is a very
common pattern on websites—and you'll often find that if a particular pattern is common,
Rails has made it trivially easy to do. In the present case, it turns out that Rails provides a
function for exactly the feature we want; we just change the link_to function to
link_to_unless_current:
file: app/views/layouts/site.rhtml

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 37 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<head>

<title><%= @title %></title>

</head>

<body>

<%= link_to_unless_current "Home", :action => "index" %> |

<%= link_to_unless_current "About Us", :action => "about" %> |

<%= link_to_unless_current "Help", :action => "help" %>

<%= @content_for_layout %>

</body>

</html>

Now Rails will automatically use the address of the current page to decide whether to make
a link or not (Fig. 2.12).

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 38 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Figure 2.12. The effect of using the link_to_unless_current.

2.4.9. Finding Things for Yourself
You might be getting nervous about something at this point. If we didn't tell you about
link_to_unless_current, how might have you discovered it for yourself? Well, there
was a time when we didn't know about it either. Here's how we found out. We knew that
Rails adheres to a naming convention whereby a group of related functions have related
names, usually of the form original_function_name and
original_function_name_with_modification (and now you know about this
convention, too!). In the present case, we suspected that link_to might have a related
function to do what we wanted, so we went to the Rails API at http://api.rubyonrails.org/ and
looked it up; in the process, as hoped, we found several link_to-type functions:

link_to

link_to_if

link_to_image

link_to_remote

link_to_unless

link_to_unless_current

It doesn't take a couple of rocket scientists to figure out that
link_to_unless_current is what we were looking for.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 39 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://api.rubyonrails.org/

2.5. Developing with Style
Some programmers like to isolate themselves completely from the graphical side of web
development. While we can certainly understand this tendency, we don't recommend it.
Inserting stylistic elements into the code, even if they are fairly primitive by the standards of
real graphic designers, will in fact help the project along. A site that looks more like a finished
project is a great source of motivation; moreover, since the final product will have a graphical
user interface, programmers should start thinking about site design, page length, form
simplicity, and layout as soon as possible. If you build in design from an early stage, it will
feel like a natural part of the application, rather than an add-on.
As you may have guessed from the DOCTYPE declaration in all our HTML files, we are fans of
web standards, including valid XHTML and Cascading Style Sheets; those of you familiar with
web standards won't be surprised that we will be adding styles using a CSS[28] file. You also
probably won't be surprised that Rails has a helper function (called
stylesheet_link_tag) for including CSS files into Rails applications; here's how to
include a file called "site.css":

[28] Cascading Style Sheets provide a unified way to apply styling to web pages. See http://www.w3.org/Style/CSS/ for more information.

<%= stylesheet_link_tag "site" %>

The proper place to put this is inside the <head></head> tag of our site layout:
file: app/views/layouts/site.rhtml

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<head>

<title><%= @title %></title>

<%= stylesheet_link_tag "site" %>

</head>

<body>

<div id="whole_page">

<div id="header">RailsSpace</div>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 40 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://www.w3.org/Style/CSS/

<div id="nav">

<%= link_to_unless_current "Home", :action => "index" %> |

<%= link_to_unless_current "About Us", :action => "about" %> |

<%= link_to_unless_current "Help", :action => "help" %>

</div>

<div id="content">

<%= @content_for_layout %>

</div>

</div>

</body>

</html>

Note that in addition to adding the style tag, we wrap the navigation, header, and content
sections in <div></div> tags so that we can style those sections explicitly. In addition,
there is a whole_page wrapper for all of the page content.
Create the site stylesheet in the directory public/stylesheets/:
file: public/stylesheets/site.css

body {
 font-family: sans-serif;
 background: gray;
 margin: 0;
 text-align: center;
}

#whole_page {
 width: 50em;
 margin: auto;
 padding: 0;
 text-align: left;
 border-width: 0 1px 1px 1px;
 border-color: black;
 border-style: solid;
}

#header {
 color: white;
 background: maroon; /* No "ruby" defined in HTML color names! */
 font-size: 24pt;

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 41 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 padding: 0.25em;
 margin-bottom: 0;
}
#nav {
 color: black;
 font-size: 12pt;
 font-weight: bold;
 background: #ccc;
 padding: 0.5em;
}

#nav a, #nav a:visited {
 color: maroon;
 text-decoration: none;
}

#nav a:hover {
 border-bottom: 2px dotted maroon;
}

#content {
 height: 100%;
 background: white;
 padding: 1em;
}

#content h1 {
 font-size: 18pt;
}

Now, our pages now look like Figures 2.13–2.15.

Figure 2.13. The main page with CSS defined.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 42 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Figure 2.14. The about page with CSS defined.

Figure 2.15. The help page with CSS defined.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 43 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

3. Modeling users

Having a front page up and running is a good start, but now it's time to get to the core of
any social networking site: a database of registered users. In the process, we'll experience
the remarkable power of models—the M in MVC—which, perhaps more than anything else,
sets Rails apart from other frameworks.
The purpose of this chapter is to build a User model to represent RailsSpace users, deciding
which attributes (such as screen names, email addresses, etc.) we want them to have. The
User model will rely on Active Record, a library for communicating between Ruby objects
and relational databases. We'll spend much of the chapter exploring Active Record using the
console, which is essentially a command-line for Rails. We'll also learn about migrations, which
provide a convenient and flexible way to manage our data models using pure Ruby.

3.1. Creating the User Model
In this section we'll get started with data modeling by creating a basic User model. As a
prelude to this, we'll install and configure a database and some associated tools. Then we'll
use Rails migrations to create the table and columns for the User model.

3.1.1. Setting up the Database
Since we want to store our users in a database, we first need to install one. Its advocates often
describe Rails as being database agnostic, which means that almost all Rails database
functions will work for a variety of databases[1], but we still have to pick one to get started
(see box)[2]. Since we're lazy, we'll go with the Rails default database, MySQL.

[1] So shouldn't it be database polytheistic?

[2] Though it's a bit of a pain, you can actually run Rails without a database, in which case you are a database atheist.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 44 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Choosing a database

Rails works with MySQL, Oracle, PostgreSQL, and SQLite, among others. We use
MySQL, which is the default, but we have heard especially good things about
PostgreSQL (which everyone calls simply Postgres), and the reader is warned that
the authors have never met a Postgres user who didn't look down on MySQL. The
contempt Postgres users have for MySQL might have made sense a few years ago,
but MySQL has come a long way in that time, and we're not embarrassed to use
it. Nevertheless, we still sometimes secretly worry that those Postgres users know
something we don't. You might want to give it a try.
By the way, MySQL is pronounced "My-Ess-Cue-Ell". If you insist on pronouncing
it "My-Sequel", Aure won't hold it against you, but Michael will.

At this point you need to download and install MySQL (version 5 or later) for your platform
[3]. You might also look into getting the MySQL query browser[4] (cross-platform),
PHPMyAdmin[5] (cross-platform), CocoaMySQL[6] (OS X), or HeidiSQL[7] (Windows), which
provide graphical user interfaces for interacting with MySQL databases. Once you've done
that, you'll be ready to create the database[8] that we will use for RailsSpace.

[3]http://dev.mysql.com/downloads/

[4]http://www.mysql.com/products/tools/query-browser/

[5]http://www.phpmyadmin.net/home_page/

[6]http://cocoamysql.sourceforge.net/

[7]http://www.heidisql.com/

[8] In a bit of confusing but standard usage, the word "database" refers both to the overall program (such as MySQL) and to the separate data stores maintained within the
program.

Rails uses a convention of separate databases for development, production, and testing; that
way, if you happen to write some action that clobbers the database, you won't accidentally
destroy your production machine. There's also a standard convention for the database
names: the project name in underscore format (that is, rails_space instead of
RailsSpace), followed by an underscore, followed by the type of database. In our case, the
development database will be called rails_space_development. You can create this
database using a GUI tool, but we're in a habit of using the command line; for MySQL, the
command is[9]

[9] Depending on your platform, you might have to start MySQL first, and you might have to type in the full path name of mysqladmin (e.g., /usr/local/mysql/bin/
mysqladmin).

> mysqladmin create rails_space_development --user=root --password=my_password

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 45 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://dev.mysql.com/downloads/
http://www.mysql.com/products/tools/query-browser/
http://www.phpmyadmin.net/home_page/
http://cocoamysql.sourceforge.net/
http://www.heidisql.com/

This uses the mysqladmin command to create the database using the root[10] user, assuming
that the password is "my_password" (but you should, of course, choose a more secure
password than this; see the database documentation for instructions on how to do this).

[10] The term comes from Unix, where root is the name of the administrative superuser allowed to do basically anything on the system.

There's one more step before we can start building our User model: we need to tell Rails how
to talk to the database. Rails uses a configuration file written in the YAML format located in
config/database.yml (see box). Let's take a look at it[11]:

[11] You can ignore the stuff at the top of the database.yml file about installing the MySQL driver; we just took care of that by installing MySQL.

file: config/database.yml
MySQL (default setup). Versions 4.1 and 5.0 are recommended.

#

Install the MySQL driver:

gem install mysql

On MacOS X:

gem install mysql -- --include=/usr/local/lib

On Windows:

There is no gem for Windows. Install mysql.so from RubyForApache.

http://rubyforge.org/projects/rubyforapache

#

And be sure to use new-style password hashing:

http://dev.mysql.com/doc/refman/5.0/en/old-client.html

development:

adapter: mysql

database: rails_space_development

username: root

password: my_password

host: localhost

Warning: The database defined as 'test' will be erased and

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 46 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

re-generated from your development database when you run 'rake'.

Do not set this db to the same as development or production.

test:

adapter: mysql

database: rails_space_test

username: root

password:

host: localhost

production:

adapter: mysql

database: rails_space_production

username: root

password:

host: localhost

Focus on the part under development:. You can see that we've told Rails the username
and password to use to connect to the rails_space_development database[12]. (Also
note that, since we followed the conventional naming scheme, Rails already knew the name
of our database.) With that bit of configuration done, we're now ready to roll with our data
modeling.

[12] If you have databases for multiple projects, you might want to create a different user for each one instead of using root for all of them. Go ahead and create a
rails_space MySQL user at this point if using root makes you unhappy.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 47 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Rhymes with "camel"

The .yml configuration files used by Rails are written in YAML, a lightweight plain-
text language for storing data in a convenient, human-readable format. Its name
is a shamelessly geeky two-layer joke. Most computer terms that start with "ya"
are "yet another" something; yacc, for example, is "yet another compiler-
compiler". One might guess, therefore, that YAML is "Yet Another Markup
Language". In this case it's a bit of misdirection, though, as YAML uses another
common hacker naming tradition, the recursive acronym: "YAML Ain't a Markup
Language".

3.1.2. Migrations and the User Model
Now that we have a database, it's time to make a data model for our users. We will use the
standard method for database-backed websites and create a users table, with table
columns corresponding to the user attributes. We'll start with three attributes:
screen_name, email, and password, but (as we'll see in Section 3.2.6) Rails makes it easy
to add more attributes later if we want.
As in the case of controllers, the Rails generate command is the most convenient way to
make a new model, which we'll call User[13]:

[13] As with controller names, it's conventional to use CamelCase for the model name—which, also as in the case of controllers, generate promptly converts to underscore
format.

> ruby script/generate model User

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/user.rb

create test/unit/user_test.rb

create test/fixtures/users.yml

create db/migrate

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 48 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

create db/migrate/001_create_users.rb

The final file created by generate, db/migrate/001_create_users.rb, is the first file
we need to edit. It contains a migration that creates the first version of our users table. It used
to be necessary to learn the SQL DDL (Structured Query Language Data Definition Language)
in order to create database tables, but migrations provide a way to manipulate databases
using Ruby instead. In addition to saving you the trouble of learning SQL DDL, migrations
make it possible to use the same files to create tables in Oracle, MySQL, or whatever
supported database you're using[14]. They also make it very easy for your data model to evolve
and devolve as needed so that it matches the code.

[14] This is part of what it means to be database agnostic.

3.1.3. The first User Migration
The generate script creates a skeleton migration file for creating the users table:
file: db/migrate/001_create_users.rb

class CreateUsers < ActiveRecord::Migration

def self.up

create_table :users do |t|

t.column :name, :string

end

end

def self.down

drop_table :users

end

end

The file has two functions, self.up and self.down, which represent migrations up from
version 0 to version 1 or down from version 1 to version 0[15]. In the case of the skeleton file,
the self.up function creates an empty users table, while self.down undoes the action
of self.up by dropping the users table from the database. The line under

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 49 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

create_table, which is commented out, serves as an example of how to create a column
in the database table of type string and with name name.

[15] Don't worry about what self means at this point.

We want a non-empty users table, so we have to define columns of data types to store the
information about our users. Let's expand the self.up function to create columns for each
user's screen name, email address, and password:
file: db/migrate/001_create_users.rb

class CreateUsers < ActiveRecord::Migration

def self.up

create_table :users do |t|

t.column :screen_name, :string

t.column :email, :string

t.column :password, :string

end

end

def self.down

drop_table :users

end

end

If the syntax for table creation looks strange, that's not surprising: it's our first example of a
remarkable Ruby construct called a block, which is a way of bundling together a group of
statements (in this case, all the code between do and end). Since we want to get on with our
data modeling, it would take us too far afield to explain blocks in detail now, but we'll return
to the subject in Section 4.2.3.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 50 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Rails table names

The detail-oriented reader may have noticed that we (or, more accurately, the
generate command) called our user table users instead of user. This is an
aspect of Rails design philosophy, which uses natural language to help us store
the data model in our heads as well as in our computers: it just makes more sense
to say

SELECT screen_name FROM users WHERE id=1

than

SELECT screen_name FROM user WHERE id=1

Rails has a powerful inflector that properly pluralizes virtually all the table names
you are likely to need. If you come across a word that Rails can't pluralize, or if you
decide not to use the default convention, you should do a web search on Rails
set_table_name to learn about the facilities Rails provides for alternate table
naming (including using Rails with legacy database schemas whose tables already
have names).

3.1.4. Raking the Migration
We make the migration happen using the Ruby utility Rake, which is kind of like a Make
command for Ruby (see box):

> rake db:migrate

(in /rails/rails_space)

== CreateUsers: migrating ==

-- create_table(:users)

-> 0.0995s

== CreateUsers: migrated (0.1013s) ===

This creates a bare-bones user database that contains the screen name, email address, and
password[16]. If you take a look at the database with your favorite GUI, you'll see that it now
has the users table, which in turn has three columns corresponding to those we defined in
the migration, as well as an id column that Rails creates automatically to identify our users
(Fig. 3.1). (You also might notice schema_info, which is a table that Rails uses for its own
internal nefarious purposes (see box).)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 51 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

[16] If the rake command fails, check to make sure you put the password for your database in database.yml.

Figure 3.1. Users schema as displayed by CocoaMySQL.

[View full size image]

Readers coming from outside the Unix tradition may not be familiar with Make.
The make program is most often used to build executables by selectively
compiling source code files. Perhaps its best-known use is handling dependencies
(defined in a Makefile), so that, if source file foo.c changes, only files that depend
on foo.c get recompiled. Make is actually far more general than this, though,
and more advanced Makefiles often define commands such as make doc to make
documentation and make clean to remove non-source files (such as object files
and executables) that can be rebuilt from the source. The Ruby system Rake (with
the associated Rakefile) incorporates both the dependency-based build and
general utility aspects of its cousin Make.

We referred above to the self.down function, which undoes the actions performed by
self.up. This is a hint about one of the benefits of migrations: we can rollback any changes
to the database if desired, simply by reverting to a previous version using a command line
argument to rake[17]. For example, to migrate our database back to version 0, we would use

[17] Migrating down destroys any data in your database, so it can be helpful to have a mechanism for loading some standard sample data; see Section 10.2 for one possible
approach.

> rake db:migrate VERSION=0

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 52 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyX21hLjFwdGxzb2gzX2MvX2NvY3Ffc2pfYXlscDFpZw--

(in /rails/rails_space)

== CreateUsers: reverting ==

-- drop_table(:users)

-> 0.0077s

== CreateUsers: reverted (0.0085s) ===

Go ahead and play around with rolling back to previous versions now if you like, but be sure
to run

> rake db:migrate

before moving on to the next section.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 53 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Debugging tip: Wiping the database

Sometimes, in the process of making your database migrations, you'll completely
screw up the database, especially if you edit your migrations to make them follow
a logical progression (perhaps, to pick a random reason, because you're writing a
book on Rails). One common symptom is an error message like this:

> rake db:migrate VERSION=0

.

.

.

rake aborted!

Mysql::Error <something really scary-looking>

It's hard to be more specific than that; trust us when we say that you'll know it
when it happens. The main indication is that you will just want to wipe the damn
thing clean, and then possibly throw your computer across the room.
Unfortunately, it's a little tricky to rebuild your database from scratch. The secret
is to empty out the schema_info table, which stores the migration and version
information; once your migrations and database get out of sync, everything goes
haywire unless you wipe schema_info clean. So, here's what to do if you need
to reset your database:

1. Using your favorite GUI or the command line, drop all the tables
2. rake db:migrate

Now your database should be squeaky clean. (If you throw your computer
across the room, you're on your own.)

3.2. User Model Validations
It's nice to see that the migration created our table and columns, but what good does it do
us? How do we use the database in the context of Rails? Let's take a look at the User model:
file: app/models/user.rb

class User < ActiveRecord::Base

end

It looks virtually empty, but notice that our user class inherits from something called
ActiveRecord::Base. This is a big hint that User is more than meets the eye: because of

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 54 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

inheritance, it automatically has all the functionality associated with the ActiveRecord::Base
class. Active Record is a large library for interacting with the database in a convenient way,
known as an object-relational mapping (ORM).
The heart of an ORM library is a mapping between database tables and classes, where each
row maps to an instance of the class (i.e., an object) and each column value is an attribute of
the instance. More concretely, in the context of Rails this simply means that, instead of writing
SQL code to deal with a screen_name column in the users table, we can just use Ruby
code to deal with user.screen_name. With Active Record, we can easily create Ruby
objects that model our users, validate their properties, save them to the database, and
retrieve them at our leisure. The best part is that we (almost) never have to get down-and-
dirty with messy SQL; all of our interactions with a database can be done in pure sweet, sweet
Ruby.

3.2.1. The Console
The best way to understand Active Record is to see a bunch of examples. This is quite difficult
in the context of a web page, since most of what Rails does goes on behind the scenes.
Happily, Rails comes with a remarkable console tool, which is basically the interactive Ruby
interpreter irb (which we saw when we learned about hashes in Section 2.4.4) run in a Rails
environment, so that it has access to all of the standard Rails functions as well as any classes
or functions that we write. You can think of the console as a command line for Rails.
In addition to being useful for developing an intuition for Rails functions by interacting with
Rails in a concrete way, the console is also an industrial-strength tool: many a nasty Rails bug
has been squashed using the console, and we've even heard that David Heinemeier Hansson,
the originator of the Rails framework, relies on the console to administer the popular
Basecamp web application. Let's take a look at what it can do:

> ruby script/console

Loading development environment.

>> user = User.new(:screen_name => "me",

?> :email => "",

?> :password => "a")

=> #<User:0xb76fadd0 @new_record=true,

@attributes={"screen_name"=>"me", "password"=>"a", "email"=>""}>

>> user.screen_name

=> "me"

>> user.save

=> true

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 55 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Because the console gets started in our Rails development environment, we have access to
the User class from user.rb. In this example, we use the new method that automatically
comes with any Active Record class, including our User class. Using a hash of values,
User.new initializes a new instance of class User, which we have called user.

To save or to save()

Parentheses are optional on Ruby methods, including those that take no
arguments. If you want to, you can certainly use parentheses, which means you
can save a user with user.save() instead of user.save. This might make you
Java/Python/PHP programmers out there happier, since user.save might look
a little bit too close to a regular class attribute for your comfort. On the other hand,
leaving off the parentheses in this context is very Rubyish; putting them back on
will immediately mark you as a Java/Python/PHP programmer.

Notice that, since we didn't give an email option in the initialization hash, the user attribute
corresponding to email is nil. The next part of the example shows how to access the
screen_name attribute using the same dot notation used for Ruby method calls. Finally,
we use the save method to write the user information to the database (see box), which
returns true to indicate success.
We could use our favorite GUI to check the status of the database, but we can also use Active
Record to prove that the new user is actually there. First, we'll clear out the user variable by
setting it to nil, and then we'll use a find method called find_by_screen_name to fetch
our user from the database:

>> user = nil

=> nil

>> user = User.find_by_screen_name("me")

=> #<User:0xb76b6e50 @attributes={"id"=>"1",

"screen_name"=>"me",

"password"=>"a",

"email"=>nil}>

>> user.password

=> "a"

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 56 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Notice that Rails somehow knew that our user had an attribute called screen_name, and
constructed the find_by_screen_name method based on that attribute just for us. This
is but one example of the wonderful magic of Rails (see box).

Reflection and metaprogramming

Rails takes advantage of the power of Ruby in many ways, none so dramatic as
the dynamic creation of database find methods. By reflecting on (reading) the
names of the columns from the database, Rails is able to synthesize functions on
the fly using Ruby metaprogramming, which basically means having code write
code[18]. In our case, Rails looks in the database and sees that there's a column
called screen_name; it then uses powerful incantations to tell Ruby to make a
function called find_by_screen_name. There are dark forces at work here, but
if you're curious and brave you can learn more about these incantations at

http://blog.hasmanythrough.com/articles/2006/08/13/
how-dynamic-finders-work

[18] This technique reaches its zenith in Lisp macros, whereby Lisp programs can generate entire new Lisp programs—leading to the sign held up by the homeless Lisp
hacker: "Will write code that writes code for food."

3.2.2. A Simple Validation
In a certain sense we're now "done" with the user data model—after all, the users table is
now created in the database, and we can read and write user objects using the User class.
That's not the full story, though; in the example above we were able to create a user with an
absurdly short screen name and password, and with no email address at all. We would like
to be able to impose restrictions on the kind of user objects we save to the database; for
instance, we probably want to limit the length of screen names and passwords—say, at least
4 characters long but no more than 40. We would also like to make sure that screen names
and email addresses are unique. Finally, we'd like to make sure that there is a nonempty email
address which is at most (say) 50 characters long.
Rails makes it easy to impose these sorts of constraints on our models by applying
validations before anything gets saved to the database:
file: app/models/user.rb

class User < ActiveRecord::Base

validates_uniqueness_of :screen_name, :email

validates_length_of :screen_name, :within => 4..20

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 57 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

validates_length_of :password, :within => 4..40

validates_length_of :email, :maximum => 50

validates_presence_of :email

end

This code probably looks like magic, and that's pretty much what it is. These validations are
function calls, but you don't have to think of them that way; instead, think of them as
instructions to the User class itself, telling it about the properties that it should have. Rails
runs these validations when it tries to save the user to the database, and the save only
succeeds if all the validations pass. If the validation fails, it gives an error message which can
be returned to the user. We'll see several examples of this shortly.
The validates_uniqueness_of function takes in one or more symbols and, before
saving the model to the database, makes sure that there isn't already an entry matching any
attribute corresponding to one of the symbols. In other words, if you try to register with
screen name foobar,

validates_uniqueness_of :screen_name

won't let the save go through if screen name foobar is already in use. By the way, the
uniqueness check is case-insensitive, so we don't have to worry that we'll have two different
users called "foobar" and "FooBar".
Inside the length validations we've used the :within and :maximum options. As you can
probably guess, validating the screen name with :within => 4..20 makes sure that the
screen name is no shorter than 4 characters and no longer than 20; this uses the Ruby ..
syntax, which creates a class of Ruby object called a range. Meanwhile, :maximum => 50
makes sure that the corresponding attribute (email, in this case) is no more than 50 characters
long. The validates_length_of function accepts several other options; see the Rails API
for more possibilities.
Since their origins are often obscure, hard-coded numbers like 4 or 20 (so-called magic
numbers) can make for confusing code; let's take this opportunity to bind those numbers to
more descriptive constants. We'll see later that we can reuse these constants (in keeping with
the DRY principle), but the increased readability alone is worth the trouble. In Ruby, constants
must begin with a capital letter and are conventionally written in all caps, so we can introduce
constants for screen name, password, and email validations as follows:
file: app/models/user.rb

class User < ActiveRecord::Base

Max & min lengths for all fields

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 58 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

SCREEN_NAME_MIN_LENGTH = 4

SCREEN_NAME_MAX_LENGTH = 20

PASSWORD_MIN_LENGTH = 4

PASSWORD_MAX_LENGTH = 40

EMAIL_MAX_LENGTH = 50

SCREEN_NAME_RANGE = SCREEN_NAME_MIN_LENGTH..SCREEN_NAME_MAX_LENGTH

PASSWORD_RANGE = PASSWORD_MIN_LENGTH..PASSWORD_MAX_LENGTH

validates_uniqueness_of :screen_name, :email

validates_length_of :screen_name, :within => SCREEN_NAME_RANGE

validates_length_of :password, :within => PASSWORD_RANGE

validates_length_of :email, :maximum => EMAIL_MAX_LENGTH

validates_presence_of :email

end

Though the names may seem comically verbose in the context of the User model, when we
use them in other areas of RailsSpace we'll be glad that they are so descriptive, since their
meaning will be apparent at a glance. What we lose in brevity we gain in clarity[19], and our
efforts in defining these constants will be put to excellent use in Section 4.2.4, Section 5.6,
and Section 6.2.4.

[19] We won't dispute that using Ruby constants is rather LOUD, but they nevertheless seem like the right tool for the job. You can actually have the best of both worlds by
using a remarkable Ruby feature called method_missing, which can be used to make model constants look like regular (and much quieter) object attributes.
method_missing is beyond the scope of this book, but if your curiosity is piqued a little web searching will no doubt lead you in the right direction.

3.2.3. Validations in Action
Let's take a look at what happens now when we try to save an invalid user. We first need to
reload the Rails environment (using the perhaps overly excited-looking reload! command)
so that the User model will be equipped with the validations we just defined. Then we'll take
a look at the errors on the user object after we try to save it:

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 59 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

>> reload!

>> user = User.new(:screen_name => "hi",

?> :password => "a",

?> :email => "")

=> #<User:0xb76fadd0 @new_record=true,

@attributes={"screen_name"=>"hi", "password"=>"a", "email"=>nil}>

>> user.save

=> false

>> user.errors.on(:screen_name)

=> ["is too short (minimum is 4 characters)", "has already been taken"]

>> user.errors.on(:email)

=> ["can't be blank", "has already been taken"]

>> user.errors.on(:password)

=> "is too short (minimum is 4 characters)"

It looks like our validations caught a bunch of invalid entries. We can see the errors by calling
errors.on on the attribute label; they correspond either to the errors we defined (e.g., "is
too short (minimum is 4 characters)") or to default errors used by Rails (e.g., "has already been
taken").
Let's see if we can construct a user that passes the validations:

>> user = User.new(:screen_name => "the dude",

?> :email => "dude_at_example.com",

?> :password => "foobar")

=> #<User:0xb7707c10 @new_record=true,

@attributes={"screen_name"=>"the dude",

"password"=>"foobar",

"email"=>"dude_at_example.com"}>

>> user.save

=> true

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 60 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

3.2.4. Improving Validations
We intentionally picked very simple validations, but of course we want to be more restrictive
than this. We got away with saving a screen name that has spaces in it, and an email address
that doesn't even have the "@" symbol in it. Rails doesn't provide predefined validations for
these cases, but if we define a function called validate then Rails knows to call that function
before saving to the database:
file: app/models/user.rb

class User < ActiveRecord::Base

.

.

.

def validate

errors.add(:email, "must be valid.") unless email.include?("@")

errors.add(:screen_name, "cannot include spaces.") if screen_name.include?(" ")

end

end

Here we have an example of a string method, combined with a couple of conditionals
(unless and if). You should be able to figure out from context what they do; for example,

errors.add(:email, "must be valid.") unless email.include?("@")

adds an error string corresponding to the :email symbol to an internal Rails object called
errors, unless the email string includes "@". (Notice that the include? method ends with
a question mark; this is a Ruby convention for boolean functions, which return either true or
false.)
Since we're now doing at least a minimal format check on the email address, we no longer
need the validates_presence_of test, so let's remove it:
file: app/models/user.rb

class User < ActiveRecord::Base

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 61 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

validates_length_of :screen_name, :within => SCREEN_NAME_RANGE

validates_length_of :password, :within => PASSWORD_RANGE

validates_length_of :email, :maximum => EMAIL_MAX_LENGTH

def validate

errors.add(:email, "must be valid.") unless email.include?("@")

errors.add(:screen_name, "cannot include spaces.") if screen_name.include?(" ")

end

end

And now let's take our new validations out for a spin:

>> reload!

>> user = User.new(:screen_name => "the dude abides",

?> :email => "the_dude_at_example,com",

?> :password => "foobar")

=> #<User:0xb7707c10 @new_record=true,

@attributes={"screen_name"=>"the dude abides",

"password"=>"foobar",

"email"=>"the_dude_at_example,com"}>

>> user.save

=> false

>> user.errors.full_messages

=> ["Screen name cannot include spaces.", "Email must be valid."]

>> user = User.new(:screen_name => "the_dude/abides",

?> :email => "the_dude@example,com",

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 62 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

?> :password => "foobar")

>> user.save

=> true

That's a lot better. We caught some errors that slipped by in the previous example, and using
the errors.full_messages method we're able to see the full error messages. We did
still manage to get a couple of invalid values past our validations: we put a slash in the screen
name, and (in a diabolically subtle modification) we substituted a comma for the dot in the
email address[20]. It would be really nice if we could get the computer to check for these things
automatically.

[20] We put the comma in ,com.

3.2.5. Full-Strength Validations
Our previous examples show how you sometimes start with validations that seem good to
begin with but which end up being too weak for real-world use. The time has come to
implement some real, industrial-strength validations. We'll follow a common convention for
screen names by allowing only letters, numbers, and underscores. Also, we discovered above
that simply checking for the "@" sign is not good enough email validation, and we'll see how
Rails makes it easier to enforce a more stringent requirement.
Like virtually all modern programming languages, Ruby includes support for regular
expressions[21], and they're just the tool we need. We could put some regular expression tests
in they validate function, but we don't need to; Rails provides the
validates_format_of function to make it easy to use regular expressions in validations:

[21] Ruby regular expressions are virtually identical to those from Perl and PHP. And there was much rejoicing.

file: app/models/user.rb
class User < ActiveRecord::Base

.

.

.

validates_length_of :email, :maximum => EMAIL_MAX_LENGTH

validates_format_of :screen_name,

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 63 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

:with => /^[A-Z0-9_]*$/i,

:message => "must contain only letters, " +

"numbers, and underscores"

validates_format_of :email,

:with => /^[A-Z0-9._%-]+@([A-Z0-9-]+\.)+[A-Z]{2,4}$/i,

:message => "must be a valid email address"

end

We've kept the uniqueness and length requirements, but now we're also validating the
format of the screen name and email with regular expressions—including a fairly scary
regexp in the second case[22]. Regular expressions are a huge subject, constituting essentially
a mini-language for text pattern-matching, and whole books have been written on the
subject. Everyone we know knows enough about regular expressions to get by, with most
of their knowledge coming from doing web searches to find patterns relevant to the problem
they're trying to solve.

[22] Note that, even though regular expressions are powerful enough to do both the format and length tests at the same time, we left in the length test for the screen name
so that a friendly length-related error message gets reported to the user if that validation fails.

Since the screen name regular expression is basically a subset of the one we used for email
validation, let's take a detailed look at the latter:

/^[A-Z0-9._%-]+@([A-Z0-9-]+\.)+[A-Z]{2,4}$/i,

We constructed this beast based on a few web pages we found and on our own experience.
It's a regular expression that matches the beginning of the line (^); at least one of a list of
valid characters: any capital letter, number, dot, underscore, or hyphen; the "@" sign; at least
one string of capital letters, numbers, or hyphens separated by periods; between two and
four capital letters; and then the end of line ($). Since email addresses are case-insensitive,
we included a trailing i to tell Ruby to do the comparison in a case-insensitive way, which is
also why we only needed to include capital letters in our regular expression.
This email regular expression is not a perfect test: it still lets through invalid addresses such
as foo@bar.baz or bar@baz.quux, but all valid email addresses we know of match the
pattern, and at the same time it catches many invalid ones. The regular expression for screen
names is even better: since we have complete control over the format of screen names, every
valid screen name will match our regular expression, and no invalid screen name will. Let's
take a look at them in action:

>> reload!
>> user = User.new(:screen_name => "rails/rocks",

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 64 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

?> :email => "rails@example,com",
?> :password => "foobar")
=> #<User:0xb7707c10 @new_record=true,
 @attributes={"screen_name"=>"rails/rocks",
 "password"=>"foobar",
 "email"=>"rails@example,com"}>
>> user.save
=> false
>> user.errors.full_messages
=> ["Screen name must contain only letters, numbers, and underscores",
 "Email must be a valid email address"]
>> user = User.new(:screen_name => "rails_rocks",
?> :email => "rails@example.com",
?> :password => "foobar")
=> #<User:0xb7707c10 @new_record=true,
 @attributes={"screen_name"=>"rails_rocks",
 "password"=>"foobar",
 "email"=>"rails@example.com"}>
>> user.save
=> true

Now our validations are looking pretty good. Of course, we haven't really tested them all that
thoroughly; if your spidey sense is tingling, that's a good sign, and we'll return to this subject
with a vengeance in Chapter 5.

Password encryption (?)

Starting in Chapter 6, we'll use the combination of screen name and password to
authenticate the users of RailsSpace and grant them access to protected pages.
In the process, we'll be comparing the password submitted on a login form to
passwords in our database. At this point, the alert reader may have noticed that
we're storing the user password as cleartext—that is, the password is
unencrypted, which means that anyone gaining access to our user database
would be able to see all of the passwords.
Why not encrypt the user password, store the encrypted version in the database,
and then compare encrypted versions? The answer is, we could, but (in addition
to increasing code complexity on the back-end) it would cost us the ability to send
the user a login reminder if he forgets his password. As is often the case, there is
a tension between security and convenience; for RailsSpace, we've elected to err
on the side of convenience. (The RailsSpace password reminder function appears
in Section 13.1.2 as part of an introduction to email in Rails.)

3.2.6. Magic Columns
When we made the User model, we created columns for the bare minimum of attributes, but
it would be nice to be able to keep track of our users by keeping a record of when they joined

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 65 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

RailsSpace and, later on, when they have updated their user information. That way, we can
follow the growth and activity of our site membership. Happily, Rails makes it easy to add
such attributes using magic columns.
We've already made the basic User model, so to keep track of user creation and update we
have to add a couple of columns to the current model. In principle, we could use any names
for these columns, but we want to take advantage of the Rails magic columns
created_at and updated_at. If we make columns with these names, and associate them
with the SQL datetime type, Rails will automatically fill them with the current date and time
when a user is created (Section 4.5) or updated (Chapter 8)[23].

[23] The related magic columns created_on and updated_on are the same as their _at cousins, except they are of type date.

Rails migrations make it easy to respond to changes in project requirements such as this one,
a flexibility that lowers the barrier to getting started on a model in the first place[24] Let's
generate a new migration to add the new magic columns:

[24] This is part of what makes Rails an agile framework. (See the Agile Manifesto at http://agilemanifesto.org/ for more on what it means to be agile.)

> ruby script/generate migration AddUserTimestamps

exists db/migrate

create db/migrate/002_add_user_timestamps.rb

Next, we'll use the add_column function, which takes three symbols as arguments:

add_column :table_name, :column_name, :type

In our case, we want to make a migration to add created_at and updated_at columns
to the users table[25], both of type timestamp:

[25] Recall that Rails table names are plural by default.

file: db/migrate/002_add_user_timestamps.rb
class AddUserTimestamps < ActiveRecord::Migration

def self.up

add_column :users, :created_at, :timestamp

add_column :users, :updated_at, :timestamp

end

def self.down

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 66 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://agilemanifesto.org/

remove_column :users, :created_at

remove_column :users, :updated_at

end

end

Following the usual practice for migrations, we've been sure to add commands to remove
the columns added so that we can migrate backwards if desired.

> rake db:migrate

(in /rails/rails_space)

== AddUserTimestamps: migrating ==

-- add_column(:users, :created_at, :timestamp)

-> 0.7265s

-- add_column(:users, :updated_at, :timestamp)

-> 0.6017s

== AddUserTimestamps: migrated (1.3293s) ===================================

Let's use the console to take a look at how magic columns work. First, we'll create a new user
and save it to the database:

> ruby script/console

Loading development environment.

>> user = User.new(:screen_name => "example",

?> :email => "example@example.com",

?> :password => "example")

=> #<User:0x2758e3c @new_record=true,

@attributes={"updated_at"=>nil,

"screen_name"=>"example",

"password"=>"example",

"created_at"=>nil,

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 67 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

"email"=>"example@example.com"}>

>> user.save

=> true

>> user.created_at

=> Wed Dec 06 20:00:59 PST 2006

>> user.updated_at

=> Wed Dec 06 20:00:59 PST 2006

Rails has automatically filled the magic columns with appropriate values. In this case, since
an initial save is both a creation and an update, the created_at and updated_at
timestamps are the same. Let's see what happens if we save again a few seconds later:

>> user.save
=> true
>> user
>> user.created_at
=> Wed Dec 06 20:00:59 PST 2006
>> user.updated_at
=> Wed Dec 06 20:01:18 PST 2006

As expected, this time only the updated_at timestamp changed. Pretty cool, no?

3.3. Further Steps to Ensure Data Integrity (?)
The fact that we have model validation gives us great protection from bad data originating
from the web. Traditionally, though, maintaining data integrity was the job of the database.
in our case, we have a large number of constraints enforced by model validations; some of
these constraints are (relatively) easy to implement at the database level:

- Screen name cannot be null, longer than SCREEN_NAME_MAX_LENGTH characters, or
the same as any other screen name
- Email address cannot be null, longer than EMAIL_MAX_LENGTH characters, or already
be used for another login
- Password cannot be null or longer than PASSWORD_MAX_LENGTH characters

Throughout RailsSpace, we will elect not to implement rules of this kind at the database level.
The main reason is because it significantly reduces our ability to change the constraints on
our data in the face of new requirements (in other words, it's not agile). For example, if we
decided to restrict screen names to no more than 15 characters, all we have to do now is
change SCREEN_NAME_MAX_LENGTH in the User model. If we enforced this constraint at
the database level, we would also have to remember to muck around in the database to make
the corresponding change.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 68 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

In short, the Rails Way is to have the database take care of basic integrity issues such as the
ACID[26] properties (for which it is well-suited), and to enforce more sophisticated data model
rules at the application level using validations.

[26] Atomicity, Consistency, Isolation, and Durability; see http://en.wikipedia.org/wiki/ACID.

4. Registering users

Now that we've built the database back-end to store RailsSpace user information, it's time to
make a registration page to collect it. This will involve all three parts of the MVC architecture.
The HTML for the registration view will be dynamically generated by Embedded Ruby using
a Rails function specialized for producing forms to interact with models. Once the form is
submitted, the controller will use the form data to create a User model object. What happens
next depends on whether the user is valid according to the criteria that we set in Section
3.2 when creating the User model: valid users will be saved, resulting in a successful
registration, while invalid users will be sent by the controller back to the registration view,
with error messages suitable for display in the browser.
Because it touches on so many parts of Rails, user registration is fairly complicated but highly
instructive. Mastering registration will take you a long way toward understanding Rails and
being able to use it to make practical applications.

4.1. A User Controller
Recall from Section 2.2.1 that a controller contains actions for a group of related pages. In
Chapter 2, we created the Site controller for the generic pages in our application (such as
"Help" and "About Us"), which are available to any visitor to RailsSpace and have nothing to
do with any particular user. Starting in this chapter, and going through Chapter 7, we'll be
developing actions for creating and authenticating users: registration, login, and logout,
together with a User index, which we'll use as a hub for the features of RailsSpace available
to each user. Since these features all center on users, it's time to create a new User controller
to contain them.
The object of this chapter is to give people a way to sign up for RailsSpace, so let's create a
register action, together with the controller's default index action:

> ruby script/generate controller User index register

exists app/controllers/

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 69 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://en.wikipedia.org/wiki/ACID

exists app/helpers/

create app/views/user

exists test/functional/

create app/controllers/user_controller.rb

create test/functional/user_controller_test.rb

create app/helpers/user_helper.rb

create app/views/user/index.rhtml

create app/views/user/register.rhtml

Let's take a look at our new User controller:
file: app/controllers/user_controller.rb

class UserController < ApplicationController

def index

end

def register

end

end

Based on our controller and action names, our registration page will live at http://localhost:
3000/user/register; in Section 2.2.3 (pretty URLs), we learned that a URL of this form calls the
register action in the user controller. That action then renders the template in the
corresponding rhtml file, register.rhtml. That's where we'll put the registration form.

4.2. User Registration: The View
To make the registration form, we need to edit register.rhtml. Eventually, we'll process
the data submitted from this form using the register action (Section 4.3), but we can develop
the registration form independently since even a blank action is sufficient to render a view.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 70 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

4.2.1. The Registration View: Appearance
For the registration view, we could go the traditional route used by some other frameworks
and create text and password elements in a form, and then use the names and values from
those elements to update a user table in a database, basically doing everything by hand.
This approach is cumbersome and error-prone, so Rails provides a helper function called
form_for, which makes it easy to make a form for our User model. Underneath the hood,
form_for does use form element names and values, but it uses a few tricks to make
interacting with the database much cleaner and more elegant than the standard approach.
(By the way, we'll also use a little-known but convenient HTML tag called fieldset.) The
following code introduces a lot of new material, so don't panic; we'll explain it momentarily
(Section 4.2.2):
file: app/views/user/register.rhtml

<h2>Register</h2>

<% form_for :user do |form| %>

<fieldset>

<legend>Enter Your Details</legend>

<label for="screen_name">Screen name:</label>

<%= form.text_field :screen_name %>

<label for="email">Email:</label>

<%= form.text_field :email %>

<label for="password">Password:</label>

<%= form.password_field :password %>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 71 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<%= submit_tag "Register!", :class => "submit" %>

</fieldset>

<% end %>

The resulting page (Fig. 4.1) looks pretty bad, though, so let's clean it up before moving on.
In Section 2.4 we went to the trouble of creating a nice layout for the Site controller, and it
would be nice to use the same layout for the User controller. One way to do this is to use the
layout function to invoke the Site controller's layout explicitly:
file: app/controllers/user_controller.rb

class UserController < ApplicationController

layout "site"

def index

end

def register

@title = "Register"

end

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 72 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Figure 4.1. Registration page.

It turns out that we can do even better; we expect to use the site layout for all our controllers,
and we can avoid having to put layout "site" everywhere by moving site.rhtml to
application.rhtml[1]:

[1] DOS users should use rename here.

> mv app/views/layout/site.rhtml app/views/layout/application.rhtml

This layout file is used by default, so that we can write simply
file: app/controllers/user_controller.rb

class UserController < ApplicationController

def index

end

def register

@title = "Register"

end

end

and automatically get a nice layout for every controller as long as application.rhtml is
defined.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 73 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

We can add a another minor bit of polish to the register page by wrapping each form field
in a <div> tag so that they can be styled with CSS:
file: app/views/user/register.rhtml

<% form_for :user do |form| %>

<fieldset>

<legend>Enter Your Details</legend>

<div class="form_row">

<label for="screen_name">Screen name:</label>

<%= form.text_field :screen_name %>

</div>

<div class="form_row">

<label for="email">Email:</label>

<%= form.text_field :email %>

</div>

<div class="form_row">

<label for="password">Password:</label>

<%= form.password_field :password %>

</div>

<div class="form_row">

<%= submit_tag "Register!", :class => "submit" %>

</div>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 74 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

</fieldset>

<% end %>

Finally, let's add the form styles to the site style sheet[2]:

[2] Note the hack needed to get Internet Explorer to display fieldsets and legends correctly. Experienced web developers will recognize in this a sadly familiar pattern.

file: public/stylesheets/site.css
body {
 font-family: sans-serif;
}
.
.
.
/* Hack to get IE to display fieldset/legend correctly */

html fieldset {
 position: relative;
}
html legend {
 position:absolute;
 top: -1em;
 left: .5em;
}
html fieldset {
 position: relative;
 margin-top:1em;
 padding-top:2em;
 padding-bottom: 2em;
}

/* Form Styles */

fieldset {
 background: #ddd;
}
legend {
 color: white;
 background: maroon;
 padding: .4em 1em;
}
label {
 width: 10em;
 float: left;
 text-align: right;
 margin-right: 0.2em;
 display: block;
}
.form_row {
 white-space: nowrap;
 padding-bottom: .5em;
}
.submit {
 margin-left: 15em;
}

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 75 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

That's better (Fig. 4.2)!

Figure 4.2. A more stylish registration page.

4.2.2. Understanding the Registration View
The registration view introduces several new ideas, so let's break it down into pieces. The
basic structure of our use of form_for looks like this:

<% form_for :user do |form| %>

code that uses the form variable

<% end %>

We've seen several examples before of embedded Ruby using <%=...%>; here we see a
second syntax, which omits the equals sign: <% form_for :user do |form| %>[3].
When we put code inside <%...%>, instead of evaluating the code and inserting its value,
Rails only evaluates it. This makes it possible for Rails templates to incorporate arbitrary
chunks of Ruby code. As we mentioned in the introduction, this is a major advantage of Rails:
unlike many frameworks, instead of using a watered-down language to make templates, Rails
uses full-strength Ruby.

[3] At this point, ASP programmers should be getting a distinct feeling of déjàvu.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 76 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Now we know that Rails evaluates Ruby code inside of <%...%>, but what is the result of
evaluating <% form_for :user do |form| %>? The first part is just a function call with
the parentheses omitted; form_for :user is equivalent to form_for(:user). In
Section 3.1.3, we created a model for the users of the site, each of whom is a user, so in this
case we pass form_for the :user symbol.

4.2.3. Blocks
That's all well and good, but what is that do |form| part doing? The previous Rails functions
we've seen, such as link_to, take an ordinary list of arguments, but form_for is different:
in addition to normal arguments, it requires another argument, which must be a block. Apart
from a brief encounter during database migrations (Section 3.1.3), chances are you haven't
seen anything like blocks before. Blocks are a way of creating one-shot unnamed
("anonymous") functions on the fly, whose local variables stay around only as long as we
need them. Don't worry if you aren't quite able to wrap your head around blocks right away
—they're a characteristic feature of Ruby, and Rails uses them heavily[4]. You'll have plenty of
chances to see them again.

[4] If you do understand them right away, you're smarter than we are.

The code form_for :user do |form| shows the form_for function taking in
the :user symbol, which is an ordinary function call. The next part is a block of code
(between do and end), with a new variable called form that is local to the block. We can use
that local variable until the block is ended using the end keyword, at which point the local
variable goes away. (It's important to note that the variable name in the vertical lines is up
to us; we could just as easily write

<% form_for :user do |foo| %>

code that uses foo

<% end %>

and it would do exactly the same thing. It would, of course, be more difficult for a human to
understand.) By ending the block, the end keyword causes form_for to yield the contents
of the block—which will turn out to be just a string—and insert the result into the template.
The variables local to blocks can be any kind of Ruby object[5]; in the case of form_for, the
block variable (which we've called form) comes equipped with methods[6] specialized for the
creation of fields inside an HTML form tag.

[5] Objects are basically data with some functions attached to them; Ruby blocks are (anonymous) functions with data attached to them. So, in a sense, objects and blocks
are opposites of each other. (You can complete the analogy with objects by using the lambda keyword to create a function object, or closure.)

[6] A method is just a function attached to an object. Like most object-oriented languages, Ruby uses a dot syntax to indicate method calls; foo.bar() calls the bar()
method on the foo object. (It would be more idiomatic in this case to omit the parentheses, writing instead foo.bar.)

In the present example, we use two different methods on the form object to create text
fields and a password field. When we call

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 77 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<%= form.text_field :screen_name %>

in the context of the :user symbol, Rails produces

<input id="user_screen_name" name="user[screen_name]" type="text" />

and similarly for the password field. It's not important to understand everything here; in fact,
it's probably important not to understand everything here, in the sense that it's a good idea
to ignore the actual values in the raw HTML. The id and name attributes are magic values
used by Rails to make it easy to create a User object from the form submission, but exactly
how that magic happens is isn't particularly important at this stage[7].

[7] It turns out that it's never important.

4.2.4. Registration Form Refinements
We are basically done with the registration view at this point, but there are a couple of HTML
refinements we ought to make. First, we've gone with the default size for text and password
fields, but we can customize the size by specifying the :size option. Second, when
accepting input from the user, it's good practice to put a limit on the size of the input by
using the maxlength property of the HTML input tag. In the context of embedded Ruby,
all we need to do is specify the :maxlength option. The updated register view then appears
as follows:
file: app/views/user/register.rthml

<h2>Register</h2>

<% form_for :user do |form| %>

<fieldset>

<legend>Enter Your Details</legend>

<div class="form_row">

<label for="screen_name">Screen name:</label>

<%= form.text_field :screen_name, :size => 20, :maxlength => 40 %>

</div>

<div class="form_row">

<label for="email">Email:</label>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 78 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<%= form.text_field :email, :size => 30, :maxlength => 50 %>

</div>

<div class="form_row">

<label for="password">Password:</label>

<%= form.password_field :password, :size => 10, :maxlength => 40 %>

</div>

<div class="form_row">

<%= submit_tag "Register!", :class => "submit" %>

</div>

</fieldset>

<% end %>

Notice that the maximum lengths are exactly those from the User model validations in
Section 3.2. We hope that hard-coding those lengths makes you violently (or at least mildly)
unhappy, since it means we have to keep the User model and the registration form in sync
by hand. Avoiding this situation is the essence of the DRY principle, and we've already laid
the foundation by defining constants for the relevant lengths:
file: app/models/user.rb

class User < ActiveRecord::Base

Max & min lengths for all fields

SCREEN_NAME_MIN_LENGTH = 4

SCREEN_NAME_MAX_LENGTH = 20

PASSWORD_MIN_LENGTH = 4

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 79 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

PASSWORD_MAX_LENGTH = 40

EMAIL_MAX_LENGTH = 50

SCREEN_NAME_RANGE = SCREEN_NAME_MIN_LENGTH..SCREEN_NAME_MAX_LENGTH

PASSWORD_RANGE = PASSWORD_MIN_LENGTH..PASSWORD_MAX_LENGTH

Text box sizes for display in the views

SCREEN_NAME_SIZE = 20

PASSWORD_SIZE = 10

EMAIL_SIZE = 30

.

.

.

end

Note that we've added constants for the sizes of the boxes as well.
The way we use these constants in our view is simple: we can get access to class constants
outside of the model by prefixing them with the name of the model (followed by two colons).
In other words, inside the User model we write SCREEN_NAME_SIZE, and outside we write
User::SCREEN_NAME_SIZE[8]. Updating our view with the class constants gives us the
(nearly) final form of our register view[9]:

[8] C++ programmers should get a warm fuzzy feeling just about now.

[9] We'll add one last refinement, password confirmation, in Section 8.5.

file: app/views/user/register.rthml
<h2>Register</h2>

<% form_for :user do |form| %>

<fieldset>

<legend>Enter Your Details</legend>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 80 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<div class="form_row">

<label for="screen_name">Screen name:</label>

<%= form.text_field :screen_name,

:size => User::SCREEN_NAME_SIZE,

:maxlength => User::SCREEN_NAME_MAX_LENGTH %>

</div>

<div class="form_row">

<label for="email">Email:</label>

<%= form.text_field :email,

:size => User::EMAIL_SIZE,

:maxlength => User::EMAIL_MAX_LENGTH %>

</div>

<div class="form_row">

<label for="password">Password:</label>

<%= form.password_field :password,

:size => User::PASSWORD_SIZE,

:maxlength => User::PASSWORD_MAX_LENGTH %>

</div>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 81 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<div class="form_row">

<%= submit_tag "Register!", :class => "submit" %>

</div>

</fieldset>

<% end %>

4.2.5. Fun with Forms—And debug
That's a lot of new material to absorb, so let's play around with the page a bit to get used to
it. If you're anything like us, when you see a submit button on a page, even one you just
created, you're tempted to click on it. Go ahead and try it.
Alas, nothing happens—or so it would seem. There's actually a lot going on. We can peek
under the hood by adding a few lines to the layout:
file: app/views/layouts/application.rhtml

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<body>

.

.

.

<% if ENV["RAILS_ENV"] == "development" %>

<%= debug(params) %>

<% end %>

</div>

</body>

</html>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 82 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

This makes use of the wonderful Rails debug function, which returns nicely formatted HTML
describing the structure of the variable in its argument—in this case, params, a key Rails
variable which we will learn a lot more about momentarily[10]. In order to set the debug
information off from the rest of the site visually, add the following style to the end of the site
style sheet:

[10] Rails sets an environment variable to "development" when in development mode, which is the default mode when we start the server with ruby script/
server. We put the if in our layout so that the debug information will automatically disappear when we deploy the application to a production environment (at which
point the environment variable will be set to "production").

file: public/stylesheets/site.css
.

.

.

/* Debug Style */

.debug_dump {

text-align: left;

border-top: 1px dashed black;

background: #ccc; margin: 0;

padding: 0.5em;

}

Let's take a look at what happens when we fill in the fields—let's use "foo", "bar", and "baz"—
and then click "Register!" again. At the bottom of the page you will see the debug information
for the params variable (Fig. 4.3). You might guess from the somewhat mysterious
HashWithIndifferentAccess that params is a sort of hash, and so it is. The debug
information says that the params hash has a user associated with it, which is a result of
the :user symbol that we passed to form_for.[11] Furthermore, that user itself is a hash
with three attributes, corresponding to the text fields (:screen_name, :email) and
password field (:password) we defined in the view.

[11] In other words, if we'd passed the symbol :foo to form_for, it would be the foo hash.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 83 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Figure 4.3. Registration page after submission with, foo, bar, and baz in the three fields.

Notice that we are using symbols to refer to the different attributes; this is part of a general
rule: Rails nearly always uses symbols as hash keys. We will make use of this knowledge in
Section 4.3, when the params variable will play a key role in creating new users.

4.3. User Registration: The Action
In Section 4.2.5, we used the Rails debug information to see the contents of the params
variable, but we haven't done anything with it yet. It's time to change that, and in the process
we'll make a functional registration page with minimal effort.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 84 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

GET POSTal

The hypertext transfer protocol (HTTP) provides a standardized method of
communication between clients (typically web browsers) and servers (typically
servers :-). Part of the standard includes eight different kinds of requests that clients
can make; by far the two most common are GET and POST. A GET request just gets
a page, possibly supplying some data (such as an id number) needed to retrieve
the resource; a normal hit by a browser on a web page is a GET request. A POST
request, on the other hand, typically submits data to be processed, as in a form
submission.
The Rails class ActionController::Base contains a large number of utility
functions for dealing with HTTP requests, thereby granting (through inheritance)
the same functionality to all Rails controller classes. Among these are

request.get?

which returns true for a GET request and

request.post?

which returns true for a POST request.

Recall that we used the form_for function to construct our registration form. By default,
form_for makes a form that submits to the same page that constructed it—in other words,
a self-handling form—which is our favorite kind. Ordinary hits to a web page are GET requests,
while forms submissions are typically POST requests, so we can use the request.post?
method to tell if the user has submitted the form (see box).
Let's fill in the register action in the User controller with code to create a new user object
and save its attributes to the database:
file: app/controllers/user_controller.rb

def register

@title = "Register"

if request.post?

@user = User.new(params[:user])

if @user.save

render :text => "User created!"

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 85 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

end

end

If the request isn't a POST (i.e., if it's a GET), then all register does is define the title of the
page and then drop through to the bottom of the function, at which point Rails performs
the default action: render the page register.rhtml. If, on the other hand, the request
is a POST, indicating a user submission, we create a new user using the User.new function
we saw in Section 3.2.1. Note that we create our user object as an instance variable, @user,
which is therefore available in the view (register.rhtml); this will be important for
displaying error messages when the user submission is invalid (Section 4.3.1). Once we've
created a Ruby variable for the user, we try to save the user to the database, just as we did
from the console. If successful (i.e., if @user.save is true), then we render some text using
the render function indicating that the user was created.
If you take a closer look at the creation of the user, you'll see that we use the params variable
to initialize the user attributes:

@user = User.new(params[:user])

Recall that, in the context of the Rails console, we called User.new with an explicit hash of
initial values (Section 3.2.1), but now we don't have to. Looking at the debug information on
the bottom of the page (Fig. 4.3), we can guess that params[:user] is exactly the
initialization hash we're looking for—and indeed it is. (For an even more explicit
demonstration of this, see box.)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 86 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Debugging hint: inspecting variables

Using debug lets you see the contents of, say, params[:user], but it's in a
slightly abstract form; it's not the same format you would use to type it in directly.
There is a way to see a variable in the standard human-readable format, though,
using the inspect method available on all Ruby objects.
One way to do this is to use the Ruby logger function in your action and then
look for the output in your development log file logs/development.log:
file: app/controllers/user_controller.rb

def register

.

.

.

if request.post?

Output goes to log file (logs/development.log in
development mode)

logger.info "Parameters: #{params[:user].inspect}"

.

.

.

end

The development log spits out a lot of lines of text (Fig. 4.4), so sometimes it's hard
to find the result of our custom logger command. An even more definitive way to
view the contents of a variable, which has no chance of getting lost amongst the
log messages, is to raise its contents as an exception[12]:

def register

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 87 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

.

.

if request.post?

Output goes to browser

raise params[:user].inspect

.

.

.

end

Figure 4.4. The development log (with user params foo, bar, baz).

[View full size image]

This will stop the execution of your program at that line and dump the contents
to your browser screen (Fig. 4.5). It's a heavy-handed debugging approach, but
sometimes that's exactly what the situation calls for.

Figure 4.5. Exception created by raise params[:user].inspect.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 88 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFybHRhcGdzaG9fNGMvZ19fbHBqLjRp
http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFydGl0cHBnYXNoeDRfYy9fY2VlXy5ubGpvcDVp

[12] An exception is a change in the normal execution of a program (often an error). For example, division by zero results in a ZeroDivisionError exception. Ruby
indicates exceptions with the raise keyword. Exceptions are a fairly complicated subject and take some getting used to; we recommend Programming Ruby (the Pickaxe)
by Dave Thomas for more about Ruby exceptions.

Before moving on, there's one refinement we'd like to make. Although our method of
handling form submission using a test for a POST request is common, we don't think it's
sufficient. What we really want to test for is a POST request along with a non-nil params
[:user] variable[13]. Otherwise, the register page will break if someone visits it with a POST
request from anywhere other than the register page itself—which would happen, for
example, if we decided to make a button link to RailsSpace registration from somewhere else
on the site[14]. We can incorporate this additional requirement on params as follows:

[13] The params variable is just a hash; recall from Section 2.4.4 that a hash returns nil if no value corresponds to the given key.

[14] Rails makes this easy with the button_to function, which works just like link_to but creates a button instead of a normal link. See the Rails API for more information.

file: app/controllers/user_controller.rb
def register

@title = "Register"

if request.post? and params[:user]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 89 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

@user = User.new(params[:user])

if @user.save

render :text => "User created!"

end

end

end

You may wonder why we wrote

if request.post? and params[:user]

instead of

if request.post? and params[:user] != nil

or even[15]

[15] All Ruby objects have a nil? method that returns true if the object is nil and false otherwise; see Object#nil? in the Ruby documentation at http://www.ruby-
doc.org/core/classes/Object.html#M000204.

if request.post? and not params[:user].nil?

The answer is, we could have, but we don't have to: nil is false in a boolean context (see
box). In general, which comparison form we use—an explicit comparison to nil or an implicit
conversion to true or false based on the boolean context—will depend on which one we
think is more readable. In this case, we think that

if request.post? and params[:user]

succinctly expresses the idea "if the request is a POST and there are user parameters...". (If
you prefer "if the request is a POST and the user parameters are not nil...", feel free to use
the not params[:user].nil? construction.)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 90 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://www.ruby-doc.org/core/classes/Object.html#M000204
http://www.ruby-doc.org/core/classes/Object.html#M000204

This "statement" is true

Every Ruby object evaluates to either true or false in a boolean context, that
is, in a conditional statement such as ifobject or unlessobject. This sort of
behavior is fairly common for high-level languages, but Ruby is unusual in that
the number 0, the empty array [], the empty hash {}, and the empty string ""
are all true. (This might take some getting used to.) In fact, virtually all Ruby objects
(including, for example, the string "statement") are true in a boolean context;
the only false objects are nil and false itself.

4.3.1. Form Error Messages
Now, if we go to the page and don't fill in any fields and just hit submit, at first nothing
happens. But suppose we put in an extra line in our register view using the
error_messages_for function:
file: app/views/user/register.rhtml

<h2>Register</h2>

<% form_for :user do |form| %>

<fieldset>

<legend>Enter Your Details</legend>

<%= error_messages_for "user" %>

.

.

.

<% end %>

Now some magic happens (Fig. 4.6)—Rails catches the errors and puts the error messages
on the screen. Notice that these are exactly the errors from the
errors.full_messages method we saw in our validations (Sections 3.2.4–3.2.5)! (This is
no coincidence; in fact, we have to confess that we found out about the

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 91 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

errors.full_messages method by looking at the source code for
error_messages_for in the Rails API.)

Figure 4.6. Errors reported by a blank submission.

[View full size image]

But wait, there's more! If we look at the HTML source of the page, the offending form elements
are enclosed within <div class="fieldWithErrors"> and </div>, so we can edit
the stylesheet to highlight items with errors:
file: public/stylesheets/site.css

/* Error Reporting Styles */

.fieldWithErrors {
 margin: 2px;
 padding: 2px;
 background-color: red;
 display: table;
}

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 92 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFydHJzcl9wb29zZWg0X2MvX2dpcmlldHNucmFyXzZpMXRfai5scGdh

#errorExplanation {
 border: 2px solid red;
 padding: 7px;
 padding-bottom: 12px;
 margin-bottom: 20px;
 background-color: #f0f0f0;
}

#errorExplanation h2 {
 text-align: left;
 font-weight: bold;
 padding: 5px 5px 5px 15px;
 font-size: 12pt;
 margin: -7px;
 background-color: #c00;
 color: #fff;
}

#errorExplanation p {
 color: #333;
 margin-bottom: 0;
 padding: 5px;
}

#errorExplanation ul li {
 font-size: 11pt;
 list-style: square;
}

Now if we again hit submit without filling in any information we see a nicely formatted error
page (Fig. 4.7). Sweet.

Figure 4.7. Pretty error reporting.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 93 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFydHJzcl9wb29zZWg0X2MvX2dpcmlldHNucmFyXzdpMnRfai5scGdh

Let's try using the text "rails rocks" for all three fields. As expected, it no longer complains
about screen name and password length, but it doesn't accept the screen name with spaces
(Fig. 4.8). Even better, notice that the text boxes are filled with the values from the previous
submission, so that (for example) if you accidentally put a space in the screen name you can
just delete it rather than re-typing the whole thing. Rails accomplishes this trick by filling in
the form with values from @user—which, you'll recall (Section 2.4.1), is visible in the views
by virtue of being an instance variable. (If we called the variable user instead of @user, Rails
wouldn't have known how to fill in the form values, thereby forcing the user to re-enter all
of his information if he made even one error on the registration form—not very friendly
behavior.)

Figure 4.8. A different set of errors found.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 94 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFydHJzcl9wb29zZWg0X2MvX2dpcmlldHNucmFyXzhpM3Rfai5scGdh

Finally, use the screen name "foobar", together with a valid email address and password. You
should see a one-line response, "User foobar created!". That's pretty good, but we don't want
the registration experience to leave the user at such a dead end. Let's follow a common
convention by sending the user back to the site front page with an indication that indeed
the registration was successful.

4.3.2. Flash
The standard Rails way to give user feedback after a successful event is to put a message in
a special container called the flash. This might be named after a superhero in a red suit,
but it's more likely that the name is inspired by "flash memory"—memory that is essentially
temporary and can easily be wiped clean. The flash acts essentially as a hash that lasts for
only one request, so that we can put a notice on a page which, when the page is reloaded,
disappears. Having a flash notice is so common that it has become conventional to add a
snippet to the layout itself between the header and the content[16]:

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 95 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

[16] We've added the line flash[:notice] = nil since sometimes the flash can persist a bit too long; the details aren't particularly important, but sometimes after a
redirect the flash won't disappear until after following two links instead of one. The included line fixes this problem.

file: app/views/layouts/application.rhtml
.

.

.

<div id="header">RailsSpace</div>

<div id="content">

<% if flash[:notice] -%>

<div id="notice"><%= flash[:notice] %></div>

<% flash[:notice] = nil %>

<% end -%>

<%= @content_for_layout %>

</div>

.

.

.

Here we've wrapped the flash message in a div tag with class "notice" so that we can
give it a "notice"able style by adding some rules to the site stylesheet:
file: public/stylesheets/site.css

/* Flash Notice Style */

#notice {

border: 1px solid green;

padding: 1em;

margin: 1em;

margin-bottom: 2em;

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 96 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

background-color: lightgray;

font: bold smaller sans-serif;

}

We slipped in one new little piece of embedded Ruby syntax here: we used <% if flash
[:notice] -%>...<% end -%>, with minus signs before the final percent signs, instead
of <% if flash[:notice] %>...<% end %>. The only difference is that, without the
minus signs, the embedded Ruby inserts a newline into the page. It shouldn't matter, since
HTML is supposed to be insensitive to whitespace, but some browsers actually are
whitespace sensitive in some contexts[17]. Moreover, sometimes you might want to generate
plain text (such as in a text email), and it's important to be able to suppress the newline in
this case.

[17] We're looking at you, Internet Explorer.

With our new flash notice, the layout becomes
file: app/views/layouts/application.rhtml

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<head>

<title><%= @title %></title>

<%= stylesheet_link_tag "site" %>

</head>

<body>

<div id="whole_page">

<div id="header">RailsSpace</div>

<div id="nav">

<%= link_to_unless_current "Home", :action => "index" %> |

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 97 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<%= link_to_unless_current "About Us", :action => "about" %> |

<%= link_to_unless_current "Help", :action => "help" %>

</div>

<div id="content">

<% if flash[:notice] -%>

<div id="notice"><%= flash[:notice] %></div>

<% flash[:notice] = nil %>

<% end -%>

<%= @content_for_layout %>

</div>

<% if ENV["RAILS_ENV"] == "development" %>

<%= debug(params) %>

<% end %>

</div>

</body>

</html>

4.3.3. The Finished Register Function
With the flash notice in the layout, upon successfully registering a user we can personalize
it with the screen name instead of just rendering generic text. We just put the personalized
note into the flash variable and redirect to the User index page:
file: app/controllers/user_controller.rb

def register

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 98 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

@title = "Register"

if request.post? and params[:user]

@user = User.new(params[:user])

if @user.save

flash[:notice] = "User #{@user.screen_name} created!"

redirect_to :action => "index"

end

end

end

Here the #{...} syntax is Ruby variable interpolation (see box), so that a user with screen
name foobar will see the text "User foobar created!".

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 99 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Variable interpolation

The Ruby programming language supports variable interpolation, a feature which
will be familiar to Perl and PHP programmers. In both of those languages, if we
define $title = "RailsSpace", then "Welcome to $title!" becomes
"Welcome to RailsSpace!": the variable is interpolated into the string. Ruby
has a similar construct, but with different syntax; let's take a look at it in an irb
session:

irb(main):001:0> title = "RailsSpace"

=> "RailsSpace"

irb(main):002:0> "Welcome to #{title}!"

=> "Welcome to RailsSpace!"

irb(main):003:0> 'Welcome to #{title}!'

=> "Welcome to \#{title}!

Notice that (as in Perl and PHP) Ruby only interpolates when the variable is inside
a double-quoted string; single-quoted strings don't work.

4.3.4. A Hub Stub
The redirect to the index action at the end of a successful registration works fine, but the
page itself is currently blank. Let's fill it in with a stub indicating its eventual likely use. While
we don't have much for users to do yet, we can imagine what should exist at the URL http://
www.RailsSpace.com/user. Basically, if / is the opening page for the general public, then /
user will be the hub for users, where we'll link to all things that users can do at the site. Let's
just put a note to that effect:
file: app/views/user/index.rhtml

<h1>Welcome!</h1>

<p>This page will serve as the hub for users of RailsSpace.</p>

And let's give the page a title by assigning it in the index action of the User controller:
file: app/controllers/user_controller.rb

def index

@title = "RailsSpace User Hub"

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 100 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://www.RailsSpace.com/user
http://www.RailsSpace.com/user

Now, registering the user "foobar" we get redirected to the hub (Fig. 4.9).

Figure 4.9. Flash notice announcing successful user creation.

[View full size image]

4.4. Linking in Registration
If you ever start a social networking website, you could rely on people randomly typing in
the URL for your registration page, but your investors probably wouldn't like that strategy.
Let's make sure this doesn't happen to us by adding a registration link to the layout[18]:

[18] We switch here from @content_for_layout to the yield keyword, which is the current recommended (if slightly obscure) way to insert content into layouts.

file: app/views/layouts/application.rhtml
<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<head>

<title><%= @title %></title>

<%= stylesheet_link_tag "site" %>

</head>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 101 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyXzJoanB0c2hsXzRjL19hc2ZscGEuZ185aQ--

<body>

<div id="whole_page">

<div id="header">RailsSpace</div>

<div id="nav">

<%= link_to_unless_current "Home", :action => "index" %> |

<%= link_to_unless_current "About Us", :action => "about" %> |

<%= link_to_unless_current "Help", :action => "help" %> |

<%= link_to_unless_current "Register", :action => "register",

:controller => "user" %>

</div>

<div id="content">

<% if flash[:notice] -%>

<div id="notice"><%= flash[:notice] %></div>

<% flash[:notice] = nil %>

<% end -%>

<%= yield %>

</div>

<% if ENV["RAILS_ENV"] == "development" %>

<%= debug(params) %>

<% end %>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 102 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

</div>

</body>

</html>

Note that there is an extra argument to link_to_unless_current which specifies that
the register function is contained within the User controller. The embedded Ruby tag
spans two lines, which is fine, and the :controller definition is tabbed to
match :action only for readability.
Upon reloading the register page, we see that links now appear, but if you click on "Help"
you'll find that you actually end up at http://localhost:3000/user/help, which throws an error
because the User controller does not have a help action. Home, About Us, and Help should
link to the Site controller, and we need to state that explicitly since we're now on the
registration page, which lives in the User controller:
file: app/views/layouts/application.rhtml

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<head>

<title><%= @title %></title>

<%= stylesheet_link_tag "site" %>

</head>

<body>

<div id="whole_page">

<div id="header">RailsSpace</div>

<div id="nav">

<%= link_to_unless_current "Home", :action => "index",

:controller => "site" %> |

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 103 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<%= link_to_unless_current "About Us", :action => "about",

:controller => "site" %> |

<%= link_to_unless_current "Help", :action => "help",

:controller => "site" %> |

<%= link_to_unless_current "Register", :action => "register",

:controller => "user" %>

</div>

<div id="content">

<% if flash[:notice] -%>

<div id="notice"><%= flash[:notice] %></div>

<% flash[:notice] = nil %>

<% end -%>

<%= yield %>

</div>

<% if ENV["RAILS_ENV"] == "development" %>

<%= debug(params) %>

<% end %>

</div>

</body>

</html>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 104 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

4.4.1. Helper Files
At this point, you might have noticed a little repetition in the code for the navigation links.
If we ever want to change those links—say, restoring the original link_to usage or adding
a CSS class to each link—we have to make the change in each one. Let's create a navigation
link function so that we only have to make changes in one place.
Rails provides a helper file for situations like this: any function defined in

app/helpers/application_helper.rb

will automatically be available in all of the controllers[19]. We'll put our navigation link function
there:

[19] The application helper is a module, which is a collection of functions designed to be mixed in to a class. A single module can be mixed into many different classes; Ruby
modules thereby constitute a convenient way to collect a group of related functions in one place.

file: app/helpers/application_helper.rb
module ApplicationHelper

Return a link for use in layout navigation.

def nav_link(text, controller, action="index")

return link_to_unless_current text, :controller => controller,

:action => action

end

end

Here we've used the return keyword to return the link, but in Ruby you don't actually have
to return values explicitly: the last statement in the function is automatically the return value.
Thus, it's more idiomatically correct to write
file: app/helpers/application_helper.rb

module ApplicationHelper

Return a link for use in layout navigation.

def nav_link(text, controller, action="index")

link_to_unless_current text, :controller => controller,

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 105 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

:action => action

end

end

The one bit of this code that might be a little confusing is action="index", which is a Ruby
optional argument, with (in our case) default value "index". In other words, if we call
nav_link with only two arguments, Ruby knows to make the action variable "index"
automatically.
This navigation link function doesn't buy us all that much, but its descriptive name improves
readability and (as noted above) it gives us the ability to change all the navigation links at
once. In the coming chapters, we will see many more examples of how to eliminate code
duplication in Rails.
There's one more important thing to note about our nav_link function: we put a comment
line describing the function right above the declaration. This is a documentation comment,
and Rails rewards you richly for making them (see box).
Now we that we have finished our utility function, we can tidy up our layout, which is now
in its final form:
file: app/views/layouts/application.rhtml

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<head>

<title><%= @title %></title>

<%= stylesheet_link_tag "site" %>

</head>

<body>

<div id="whole_page">

<div id="header">RailsSpace</div>

<div id="nav">

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 106 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<%= nav_link "Home", "site" %> |

<%= nav_link "About Us", "site", "about" %> |

<%= nav_link "Help", "site", "help" %> |

<%= nav_link "Register", "user", "register" %>

</div>

<div id="content">

<% if flash[:notice] -%>

<div id="notice"><%= flash[:notice] %></div>

<% flash[:notice] = nil %>

<% end -%>

<%= yield %>

</div>

<% if ENV["RAILS_ENV"] == "development" %>

<%= debug(params) %>

<% end %>

</div>

</body>

</html>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 107 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Site documentation

To see the virtue of documentation comments (which appear immediately before
function definitions), add nav_link to the Application helper as described in the
text and then run the following command:

> rake doc:app

This creates HTML documentation for your application and puts it in doc/app/
index.html, so you can view it in your browser at

file:///path_to_rails_space/doc/app/index.html

replacing path_to_rails_space with the path on your machine. From Fig.
(4.10), you can see that the documentation comment appears under the name of
the function, so by consistently adding documentation comments you get great
site documentation practically for free.

Figure 4.10. Rails application documentation.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 108 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyX2RlbGdwcF9zcmgwNC9jX2FrX3N0Y2Eub2oxaQ--

4.5. An Example User
Now that we finished the register action and the associated site changes, let's create a
hypothetical user for use in the rest of the book, a user we will call Foo Bar:

1. If the users table is not empty, empty it now using your MySQL GUI of choice (or the
command line), or even better yet, rake db:migrate VERSION=0 followed by
rake db:migrate so that you start from a completely blank slate.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 109 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

2. Go to http://localhost:3000/user/register and register Foo Bar with the following
information:

1. Screen name: foobar
2. Email: foobar@example.com[20]

[20] How Foo managed to get an email address at example.com, we'll never know.

3. Password: bazquux (or a password of your choice)

We'll learn how to log Foo in starting in Chapter 6. Before moving forward, though, we should
address a most pressing matter: we are currently performing no tests on our application.
Most frameworks don't provide automated testing facilities at all, of course, but the Rails
community generally considers testing a necessity. We agree—so let's get started.

5. Getting started with testing

If you've spent much time developing web applications, you've no doubt experienced the
pain of making a form handler (for, say, registration), filling it out to test it, making some
changes (say, adding some fields), filling it out again, having it break, filling it out again, fixing
one problem but having it break for a second unrelated reason, filling it out again—well, you
get the idea. What a disaster! What's a developer to do?
Rails to the rescue! By using automated testing we don't have to do any of those things by
hand—Rails does them all for us. Rails unit tests let us check our model validations and make
sure that the database is working. Functional tests let us simulate a browser hitting the
controller actions, verifying responses, redirects, variable assignments, and HTML tags.
Finally, integration tests let us see how different parts of the application interact by simulating
a browser hopping from page to page. In this chapter, we cover unit and functional tests; we
introduce integration testing in Section 7.4.
By taking time now to write tests for our models, views, and controllers, we effectively stop
moving forward with our application and instead take a step sideways. If you're skeptical that
this is a good idea, you're not alone (see box). In our experience, though, tests make for better,
cleaner code, and end up saving time in the long run by exposing flaws in the current
application and catching bugs as the application evolves. Put simply, the Rails testing
facilities are the greatest thing since sliced bread.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 110 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Aure says: Don't panic!

There are going to be some developers who get to this chapter and say "Oh no,
not testing already!", and I want to commiserate with you. I skipped testing when
I first learned Rails because the chapter was long and the tests seemed trivial. So,
having been there, I want to implore you not to skip this chapter. We'll keep it
relevant and to-the-point, and the payoff is great.
I think you'll be a convert like me...Now, whenever I check out new Rails-based
software, I go straight to the tests to see if I can really trust the developer.

5.1. Our Testing Philosophy
Testing is a huge part of Rails. Some people even use "Test-Driven Development" (TDD) when
creating applications, which involves writing a (failing) test for each new feature even before
implementing the feature itself. (This might sound a bit extreme, but we know people who
swear by TDD.) Our approach is to work on each piece of an application until we think that
it's unlikely to change in a fundamental way (at least in the short run). At that point, we write
some tests to anchor the state of the project. Then we can continue developing the
application (adding new tests as necessary) while occasionally running the test suite to make
sure we haven't broken anything.
This is the point we find ourselves at now with RailsSpace. We've defined the User model and
made a registration form to manipulate that model by saving submitted information to the
database. The front-end interface and back-end data model are both fairly stable, so now is
a good time to write some tests.
By the way, we will show plenty of examples of tests being run at the command line, but you
should feel free to run the tests as little or as often as you like. In particular, if you've added
several tests and you start to worry about whether they'll pass or not, that's a sign that it's
time to run the tests again.

5.2. Test Database Configuration
If testing is so great, you may be wondering why we didn't introduce it sooner—maybe even
in Chapter 2. The main reason is that Rails (lamentably) requires a database to run its tests,
even if the tests don't need a database, and setting up a database just to test a handful of
mostly static pages seemed like a lot of overhead. (Actually, it is possible to set up Rails to
run its tests without a database, but it's nearly as much trouble as setting up a database.)
Now that we've set up our database for the User model, though, there's no excuse for not
testing the Site controller.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 111 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Since testing can potentially destroy or alter data, we'll need to create a testing environment
that is non-destructive to data in either the development database or the (yet-to-be-created)
production database. For this purpose, Rails uses a dedicated testing database, which in our
case will be called rails_space_test. Create a database with that name using whatever
command line or GUI interface you prefer. (As we'll see in Section 5.5, we don't need to create
the tables or columns, just the database itself.)
We'll configure the test database the same way we configured the development database.
Recall from Section 3.1.1 that Rails uses the database.yml file to get the login and
authentication information for the development database; the same file has a place for test
database configuration, so let's put that in now:
file: config/database.yml

test:

adapter: mysql

database: rails_space_test

username: root

password: <your password>

host: localhost

We need to prepare the test database with the rake utility (which we saw before in Section
3.1.4 in the context of migrations):

> rake db:test:prepare

(in /rails/rails_space)

This copies the schema from the development database into our new test database.

5.3. Site Controller Testing
You may recall that the first generate controller created a Site controller test file
(Section 2.2.2). This is our first example of a functional test. Let's take a look at it:
file: test/functional/site_controller_test.rb

require File.dirname(__FILE__) + '/../test_helper'

require 'site_controller'

Re-raise errors caught by the controller.

class SiteController; def rescue_action(e) raise e end; end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 112 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

class SiteControllerTest < Test::Unit::TestCase

def setup

@controller = SiteController.new

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

end

Replace this with your real tests.

def test_truth

assert true

end

end

You can see that Ruby is require-ing test helper functions and then creating a unit test
class using the Test::Unit::TestCase, which comes from Ruby's own unit testing
facility. It's not important to understand everything that's going on in this file (we certainly
don't); what you need to know is that if you make functions that start with test_, and then
run the file with the ruby command, it will execute those tests.
The default file has a test that is utterly trivial but serves as an example for the actual tests. It
uses the assert function to assert the truth of certain conditions. The test suite passes if all
the assertions in all the test functions are true. Since the test file is simply a Ruby file, you can
run it from the command line as follows:

> ruby test/functional/site_controller_test.rb

Loaded suite test/functional/site_controller_test

Started

...

Finished in 0.035964 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 113 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Woo hoo! It passed. (If the trivial test failed—d'oh!—more than likely your database was not
properly created or you have incorrect connection information in the database.yml file.)

5.3.1. A Nontrivial Test
We'll replace the trivial test with a test that requests each action defined in the Site controller.
The structure of each test is the same:

- Simulate the user hitting the page with a GET request using the Rails get function
- Verify that the action defines the title instance variable and fills it with the correct value
- Check for the proper HTTP response for success[1]

[1] HTTP uses a numeric code to indicate the response type; the code happens to be 200 for success. You don't have to remember this, though, since Rails lets you
use the symbol :success instead.

- Make sure that the action renders the proper rhtml templates

Implementing these steps in code gives us the following tests:
file: test/functional/site_controller_test.rb

require File.dirname(__FILE__) + '/../test_helper'

require 'site_controller'

Re-raise errors caught by the controller.

class SiteController; def rescue_action(e) raise e end; end

class SiteControllerTest < Test::Unit::TestCase

def setup

@controller = SiteController.new

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

end

def test_index

get :index

title = assigns(:title)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 114 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

assert_equal "Welcome to RailsSpace!", title

assert_response :success

assert_template "index"

end

def test_about

get :about

title = assigns(:title)

assert_equal "About RailsSpace", title

assert_response :success

assert_template "about"

end

def test_help

get :help

title = assigns(:title)

assert_equal "RailsSpace Help", title

assert_response :success

assert_template "help"

end

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 115 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Note that we're using assigns to get the value of the @title instance variable defined in
each action. The assigns function takes in a symbol and looks for the corresponding
instance variable; e.g., title = assigns(:title) looks for @title in the action and
assigns it to title.
The assert_equal function is a bit of an oddball: the first argument is the value you expect,
while the second value is the unknown quantity. To the authors this seems backwards; we'd
prefer to say "We assert that the car's color is blue", but instead you have to say "We assert
that we're expecting blue to be the car's color". That's the way it is, though, so we'll just suck
it up and deal.
Let's run the test to see how we did:

> ruby test/functional/site_controller_test.rb

Loaded suite test/functional/site_controller_test

Started

..F

Finished in 0.123532 seconds.

1) Failure:

test_index(SiteControllerTest) [test/functional/site_controller_test.rb:18]:

<"Welcome to RailsSpace!"> expected but was

<"RailsSpace">.

3 tests, 7 assertions, 1 failures, 0 errors

Oops! One of our tests passed, but the other failed. The output tells us which line the error
occurred on (line 18); if we look there, we see that we expected the title to be "Welcome to
RailsSpace!", but since it is the front page of the site it is simply "RailsSpace". Of course, in the
future we expect that the most useful test failures will involve correct tests catching bugs
introduced into our site, but when you're writing tests most of the failures will (as in this case)
lead to debugging the test code first.
Notice that under the word "Started" there is a letter "F" and two periods, indicating one
failed test and two passed tests. The order might seem mysterious, since it was the first test
in the file that failed, but it turns out that the tests run in alphabetical order. We would have
to keep our tests in alphabetical order in order to take full advantage of this, but we'd rather
let logical structure dictate the order of our tests in the file. Because of this choice, in general
we'll use the line number to find the place where the error occurred.
Let's fix the test:
file: test/functional/site_controller_test.rb

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 116 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

.

def test_index

get :index

title = assigns(:title)

assert_equal "RailsSpace", title

assert_response :success

assert_template "index"

end

.

.

.

We can run just the test_index test by passing the -n (name) flag, which takes the name
of the test as an argument:

> ruby test/functional/site_controller_test.rb -n test_index

Loaded suite test/functional/site_controller_test

Started

...

Finished in 0.090368 seconds.

1 tests, 3 assertions, 0 failures, 0 errors

5.3.2. Test Overkill?
We claimed that testing is the greatest thing since sliced bread, so you might be
underwhelmed at our first test suite. Why you would possibly want to test that Rails can
respond to a request for a page successfully? Isn't this test overkill?
Well, that's a matter of judgment, but the reason we test things like this is that sometimes
the small things that go wrong are the hardest to find. After this site gets more complex, will
we ever feel like checking if the help page is working, or if the title on that page is correct?
Probably not, and then one day someone will send us a nasty email saying the help page

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 117 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

doesn't even respond, and therefore the whole site must suck. But if we make testing the
help page part of our standard test suite, we'll probably catch any breakage before our users
do. And even if someone does write to complain, by running the test suite in response we
can pinpoint the problem and fix it.

5.4. Registration Testing
So far, the Site controller testing we've done has allowed us to feel secure that our (nearly)
static pages can be tested at any time. The next step is to test the registration process. This
is where we really kick things into high gear.

5.4.1. Running Functional Tests
Before we get started with the registration functional tests, we'd like to mention an alternate
technique for running tests, one that doesn't require using the Ruby interpreter explicitly:
Rails provides a rake shortcut you can use to run all your functional tests automatically. Let's
give it a whirl:

> rake test:functionals

Started

....

Finished in 0.207734 seconds.

4 tests, 10 assertions, 0 failures, 0 errors

There are only 3 tests in our Site controller test suite; where does the 4 come from? Well,
rake test:functionals runs all the test suites—including the trivial test in test/
functional/user_controller_test.rb (which got created automatically when we
generated the User controller). That makes 4 tests total.
By making a habit of running rake test:functionals as you build the tests in this
section, you will catch typos and other errors in the tests immediately, which will save you a
lot of time in the long run. This general style of programming is called incremental
development, and we recommend it strongly.

5.4.2. Basic Registration Tests
Let's start our registration testing by replacing the trivial test with the same basic test that
we had for the Site controller:
file: test/functional/user_controller_test.rb

require File.dirname(__FILE__) + '/../test_helper'

require 'user_controller'

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 118 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Re-raise errors caught by the controller.

class UserController; def rescue_action(e) raise e end; end

class UserControllerTest < Test::Unit::TestCase

def setup

@controller = UserController.new

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

end

Make sure the registration page responds with the proper form.

def test_registration_page

get :register

title = assigns(:title)

assert_equal "Register", title

assert_response :success

assert_template "register"

end

end

That's great, but Rails testing lets us do a lot more. Using the assert_tag function, we can
probe the actual tags on the page to make sure that they have the proper form. For example,
we know that there should be a form tag with four input tags—one each for the screen name,
email address, password, and submit button. Let's take a look at some of the HTML generated
by the registration form to figure out how to test it[2]:

[2] The Rails functions for testing HTML structure are very sensitive to invalid (X)HTML; if you are getting strange errors, you might want to validate your markup. We
recommend the HTML validator plugin for Firefox (https://addons.mozilla.org/firefox/249/). Edit its settings so that only local pages get validated and you'll be able to tell
at a glance when your markup goes astray.

file: view source on http://localhost:3000/user/register

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 119 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

https://addons.mozilla.org/firefox/249/

.

.

.

<form action="/user/register" method="post">

<fieldset>

<legend>Register</legend>

<div class="form_row">

<label for="screen_name">Screen name:</label>

<input id="user_screen_name" maxlength="20" name="user[screen_name]" size="20" type="text"

</div>

<div class="form_row">

<label for="email">Email:</label>

<input id="user_email" maxlength="50" name="user[email]" size="20" type="text" />

</div>

<div class="form_row">

<label for="password">Password:</label>

<input id="user_password" maxlength="40" name="user[password]" size="20"
type="password" />

</div>

<input class="submit" name="commit" type="submit" value="Register!" />

</fieldset>

</form>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 120 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

.

.

We see here that there is an HTML form tag with two attributes, an action pointing to "/
user/register" and a method indicating an HTTP POST request. There's also an input
tag with five attributes: a type, a size, a maximum length, and rather complicated id and name
attributes[3]. Let's use assert_tag to test for the presence and correctness of these
attributes:

[3] Don't worry about exactly where these come from; they are part of the form_for magic that Rails uses to manipulate the User model.

file: test/functional/user_controller_test.rb
Make sure the registration page responds with the proper form.

def test_registration_page

get :register

title = assigns(:title)

assert_equal "Register", title

assert_response :success

assert_template "register"

Test the form and all its tags.

assert_tag "form", :attributes => { :action => "/user/register",

:method => "post" }

assert_tag "input",

:attributes => { :name => "user[screen_name]",

:type => "text",

:size => User::SCREEN_NAME_SIZE,

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 121 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

:maxlength => User::SCREEN_NAME_MAX_LENGTH }

assert_tag "input",

:attributes => { :name => "user[email]",

:type => "text",

:size => User::EMAIL_SIZE,

:maxlength => User::EMAIL_MAX_LENGTH }

assert_tag "input",

:attributes => { :name => "user[password]",

:type => "password",

:size => User::PASSWORD_SIZE,

:maxlength => User::PASSWORD_MAX_LENGTH }

assert_tag "input", :attributes => { :type => "submit",

:value => "Register!" }

end

Note that we test both the size and maxlength attributes using the respective constants
from the User class, prefixed with User:: so that we can use them outside of the model.
Also note that we don't have to test all the attributes for every tag, but we do have to give
enough attributes so that the tag is identified uniquely (otherwise, the test wouldn't know
how to find it). For example, to test the screen name text box, we can specify either the name
or the id attribute, but we don't need both—Either one specifies the tag uniquely, and we
don't have to test both since their form is determined by the form_for function. We do,
however, test the type, size, and maximum length, since an errant keystroke could potentially
break those attributes.

5.4.3. Testing Successful Registration
Here we finally get the chance to address the nightmare scenario from the chapter
introduction: we get to automate form submission. First, we'll test a successful registration:
file: test/functional/user_controller_test.rb

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 122 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Test a valid registration.

def test_registration_success

post :register, :user => { :screen_name => "new_screen_name",

:email => "valid@example.com",

:password => "long_enough_password" }

Test assignment of user.

user = assigns(:user)

assert_not_nil user

Test new user in database.

new_user = User.find_by_screen_name_and_password(user.screen_name, user.password)

assert_equal new_user, user

Test flash and redirect.

assert_equal "User #{new_user.screen_name} created!", flash[:notice]

assert_redirected_to :action => "index"

end

Let's take this function step by step. We first need to simulate the user entering values into
our registration form and then hitting the submit button to produce an HTTP POST request;
we do this with the Rails post function. Since the registration form is generated by the
form_for function using the :user symbol, we pass post a hash argument with
key :user. The value of that hash is another hash with key-value pairs corresponding to the
variables generated by the form: in our case, these are the screen name, email, and password.
Once we've posted the user information, we use assigns to initialize a user variable from
@user in the register action. We make sure it's not nil, but, more importantly, we make
sure that a new user has actually been created in the database based on the information we
posted. Finally, we make sure that the flash variable has the proper value, and we test the
redirect to the index page of the User controller.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 123 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Notice how we were able to grab the user out of the database based on screen name and
password. Anticipating our every need, Rails has magically created the
find_by_screen_name_and_password function inside the User class to make it easy
to find users by, well, screen name and password. We saw an example of this before when
we were playing with the console in Section 3.2.1, where we used a function called
find_by_screen_name. Ruby has the remarkable ability to create new functions at
runtime; that is, we don't need to define the function explicitly—it's created on-the-fly based
on the column names in our database. We will put this function to good use again in Chapter
6, where we'll use it to log a user in.
At this point it may be bothering you that we seem to be creating a new user each time we
run the successful registration test. It's important to emphasize that the new user is created
in the test database, rails_space_test; our development (and, later, our production)
databases remain untouched. Moreover, Rails prepares a fresh database for each run of the
test, so the user created during this test is automatically destroyed when it finishes (whether
it passes or not).

5.4.4. Testing Unsuccessful Registration
Now that we've created a test for successful registration, let's make a test for some of the
things that can go wrong. We'll post the attributes of an invalid user with screen name aa/
noyes and email address anoyes@example,com. This produces the following HTML:

.

.

.

<fieldset>

<legend>Register</legend>

<div class="errorExplanation" id="errorExplanation"><h2>3 errors prohibited this user
from being saved</h2><p>There were problems with the following fields:</p>Screen
name is too short (minimum is 4 characters)Password is too short (minimum is 4
characters)Email must be a valid dress</div>

<div class="form_row">

<label for="screen_name">Screen name:</label>

<div class="fieldWithErrors"><input id="user_screen_name" maxlength="20"
name="user[screen_

</div>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 124 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com/mailto:anoyes@example,com

<div class="form_row">

<label for="email">Email:</label>

<div class="fieldWithErrors"><input id="user_email" maxlength="50" name="user[email]"
size="

</div>

<div class="form_row">

<label for="password">Password:</label>

<div class="fieldWithErrors"><input id="user_password" maxlength="40"
name="user[password]"

</div>

<input class="submit" name="commit" type="submit" value="Register!" />

</fieldset>

.

.

.

This might seem like a mess, but it's not as bad as it looks. At the top, there is a div tag for
the error messages, which contains a list with an element tag li for each of the errors. The
rest of the form is the same as the unsubmitted version, except that the input boxes with
errors are wrapped inside of a div with class "fieldWithErrors".
We can test this HTML by asserting the presence of the top error div, identified by its id and
class (both of which are "errorExplanation"). Then we'll check each of the list element
tags for the proper content; we don't want to type in the entire error message to check the
content of the error list, but assert_tag can do a partial match, so for now we'll only make
sure that the list elements start with the names of the corresponding attributes ("Screen
name", "Email", and "Password"). Finally, the trickiest test is making sure that the input
boxes are wrapped in the fieldWithErrors div tag; we do it by using the :parent option
for assert_tag, which tests the value of a tag's "parent" tag (the one wrapping it). Rolling
all of these together gives us the following test for registration failure:

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 125 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

file: test/functional/user_controller_test.rb
Test an invalid registration

def test_registration_failure

post :register, :user => { :screen_name => "aa/noyes",

:email => "anoyes@example,com",

:password => "sun" }

assert_response :success

assert_template "register"

Test display of error messages.

assert_tag "div", :attributes => { :id => "errorExplanation",

:class => "errorExplanation" }

Assert that each form field has at least one error displayed.

assert_tag "li", :content => /Screen name/

assert_tag "li", :content => /Email/

assert_tag "li", :content => /Password/

Test to see that the input fields are being wrapped with the correct div.

error_div = { :tag => "div", :attributes => { :class => "fieldWithErrors" } }

assert_tag "input",

:attributes => { :name => "user[screen_name]",

:value => "aa/noyes" },

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 126 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

:parent => error_div

assert_tag "input",

:attributes => { :name => "user[email]",

:value => "anoyes@example,com" },

:parent => error_div

assert_tag "input",

:attributes => { :name => "user[password]",

:value => "sun" },

:parent => error_div

end

Notice for the last three tests we use only the name attribute to find the tag, ignoring the
type and size of the tag since those properties are already tested by
test_registration_page.

5.4.5. Running the Tests
Of course, we've been developing incrementally by running the tests every time we add a
few lines, but it's still deeply satisfying to run them all at the end:

> rake test:functionals

Started

......

Finished in 0.208865 seconds.

6 tests, 30 assertions, 0 failures, 0 errors

Sweet!

5.4.6. More Registration Tests?
Just because we say that we are "at the end" doesn't make it so. We can think of lots more
things to test in the registration page, such as the exact error messages and enforcement of

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 127 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

the validations. But these are really tests of the model, and Rails provides a separate facility
dedicated to model testing.

5.5. Basic User Model Testing
Now that we've tested our site's controllers, let's take a look at the user model we created in
Chapter 3. It has two kinds of code: magic code and hairy code[4]. The magic code consists of
functions like "validates_uniqueness_of", which Rails somehow knows how to enforce, and
the hairy code is the stuff that uses complicated regular expressions. Now that we're in the
testing state of mind, we've become a little bit paranoid (tinfoil hats optional), and so we
don't trust that either magic or hairy code will always work.

[4] These are the technical terms.

By now you are no doubt catching on to how testing-centric Rails is, so you won't be surprised
(and you may even recall) that generate created a sample test at the same time that it
created our model. If you look back at what we did (Section 3.1.2), you'll see that
generate also created a YAML file in one of the test directories:

test/unit/user_test.rb

test/fixtures/users.yml

Like site_controller_test.rb, user_test.rb file starts out with only a trivial test:
file: test/unit/user_test.rb

require File.dirname(__FILE__) + '/../test_helper'

class UserTest < Test::Unit::TestCase

fixtures :users

Replace this with your real tests.

def test_truth

assert true

end

end

The first line under the class is important here; it tells the test to load a fixture, which contains
data to help us make our tests. The fixtures function takes a symbol and uses the data in

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 128 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

the corresponding YAML file to make objects for the test. In this case, the data file is precisely
the users.yml file created by generate. Let's take a look at it:
file: test/fixtures/users.yml

Read about fixtures at http://ar.rubyonrails.org/classes/Fixtures.html

first:

id: 1

another:

id: 2

The line fixtures :users reads this file and creates two User objects with ids 1 and 2.
Within the context of the user test, these objects can be accessed by users[:first] and
users[:second].
Of course, we'll want to edit users.yml so that the fixtures are more interesting, but first
let's see if we can get the trivial test to pass:

> rake test:units

(in /rails/rails_space)

Started

.

Finished in 0.092606 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

By the way, throughout this section we could type ruby test/unit/user_test.rb,
but we've elected to use the convenient rake task test:units, which is the unit test version
of the test:functionals task we used in Section 5.4. As you can probably guess, rake
test:units runs all of our unit tests. There's only one unit test file for now, of course, but,
as in the case of the functional tests, we'd like to get in the habit of comprehensive testing.
Now that we've gotten the trivial test to pass, let's create a couple of more interesting users
(with more than just ids). In users.yml, define one user that the system should accept as
valid and a second that is all kinds of bad:
file: test/fixtures/users.yml

valid_user:

id: 1

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 129 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

screen_name: millikan

email: ram@example.com

password: electron

invalid_user:

id: 2

screen_name: aa/noyes

email: anoyes@example,com

password: sun

Notice that we kept the ids, but gave the users names more descriptive than "first" and
"another", while filling in the screen name, email, and password attributes.
Now let's run the test again just to make sure everything still works:

> rake test:units

(in /rails/rails_space)

Started

.

Finished in 0.092606 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

The fixtures file does load and the trivial case still passes.

5.5.1. Basic Validation Testing
Now, let's start making the tests a little tougher to pass:
file: test/unit/user_test.rb

require File.dirname(__FILE__) + '/../test_helper'

class UserTest < Test::Unit::TestCase

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 130 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

fixtures :users

This user should be valid by construction.

def test_user_validity

assert users(:valid_user).valid?

end

This user should be invalid by construction.

def test_user_invalidity

assert !users(:invalid_user).valid?

end

end

> rake test:units

Started

..

Finished in 0.119358 seconds.

2 tests, 2 assertions, 0 failures, 0 errors

All we did here was attempt to validate the two users, asserting that the (supposedly) valid
user actually is valid and the invalid one not so much. Pretty trivial, eh? Well, it actually does
quite a lot, since having those tests pass means that we've configured the database correctly,
successfully loaded the fixture, extracted the users by passing the appropriate symbol to the
users function created by the fixture, and successfully executed the validation code for
each user. Those are a lot of steps that had to go right for these tests to pass.
We can clean up the code a bit by making use of the setup function to define instance
variables. We can beef up our invalidity test by checking that each one of the invalid user's
bad traits are invalid by looping over them:
file: test/unit/user_test.rb

require File.dirname(__FILE__) + '/../test_helper'

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 131 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

class UserTest < Test::Unit::TestCase

fixtures :users

def setup

@valid_user = users(:valid_user)

@invalid_user = users(:invalid_user)

end

This user should be valid by construction.

def test_user_validity

assert @valid_user.valid?

end

This user should be invalid by construction.

def test_user_invalidity

assert !@invalid_user.valid?

attributes = [:screen_name, :email, :password]

attributes.each do |attribute|

assert @invalid_user.errors.invalid?(attribute)

end

end

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 132 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

> rake test:units

Loaded suite /usr/local/lib/ruby/gems/1.8/gems/rake-0.7.1/lib/rake/rake_test_loader

Started

..

Finished in 0.185766 seconds.

2 tests, 5 assertions, 0 failures, 0 errors

Here we define instance variables for the users fixture and for the invalid user, and we loop
over each of the potentially damaging column names while asserting that the user fails
validation each time by testing the errors attribute of our user (which you can read about
in the Rails API under ActiveRecord::Errors). Note that we've used the errors
attribute, which has a boolean method invalid? that takes in a symbol and returns true if
the corresponding attribute is invalid. As we'll see in Section 5.6, errors also contains the
actual validation error messages.
We actually snuck in some new Ruby here, but we bet that it looks so natural you barely even
noticed: attributes = [:screen_name, :email, :password] is our first example
of a Ruby array. We presume that you're familiar with arrays from your prior computer
experience; Ruby arrays are much the same as in other languages, but they are distinguished
by the distinctly Rubyish way of iterating through them. Arrays have a method called each
that returns a block, and the block variable steps through the array elements one by one[5].
For a concrete example, you can always use irb (or the console):

[5] This is basically what would be called a for each loop in some other languages. In fact, in Ruby for element in array do is the same as array.each do |
element|, though the latter is the more Rubyish way to iterate.

> irb

irb(main):001:0> attributes = [:screen_name, :email, :password]

=> [:screen_name, :email, :password]

irb(main):002:0> attributes.each do |attribute|

irb(main):003:1* puts attribute

irb(main):004:1> end

screen_name

email

password

=> [:screen_name, :email, :password]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 133 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

As you may be able to infer, puts is Ruby's "put string" command; when you puts a symbol,
Ruby just converts it to the corresponding string an then prints it out (along with a newline).

5.6. Detailed User Model Testing
The testing in the previous section seems a bit generic. Running those tests gave us a sense
that our code is working, but it didn't rigorously test everything about our model. That's what
we really want.
In this section, we'll show you the lines from the User model and the assertions that
correspond to each line. Then, at the end, we'll run the complete test function to make sure
that all the assertions pass.

5.6.1. Testing Uniqueness
In the model we say:
file: app/model/user.rb

validates_uniqueness_of :screen_name, :email

so in the test we check:
file: test/unit/user_test.rb

def test_uniqueness_of_screen_name_and_email

user_repeat = User.new(:screen_name => @valid_user.screen_name,

:email => @valid_user.email,

:password => @valid_user.password)

assert !user_repeat.valid?

assert_equal "has already been taken", user_repeat.errors.on(:screen_name)

assert_equal "has already been taken", user_repeat.errors.on(:email)

end

Here the user_repeat object is a copy of the valid user from the fixture file. Since the User
model does not allow repeated screen names or email addresses, we assert that the repeat
user is invalid with assert !user_repeat.valid?[6] When we call valid? on
user_repeat, it automatically fills up the errors, which we then check to make sure the
proper error messages have been recorded.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 134 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

[6] This uses the boolean negation operator !, which is essentially the same as not except that it has a higher precedence. We could use not instead (as we have in previous
chapters), but the rules of operator precedence in Ruby would require us to write assert(not user_repeat.valid?), which is way more parentheses than we want
to use right now. (See http://phrogz.net/ProgrammingRuby/language.html#table_18.4 for a Ruby operator precedence table.)

You might feel a little uncomfortable with using the string "has already been taken" to check
the error message. After all, you may misremember it as "is already taken", or it may even
change in a future version of Rails. So, instead, you can look up the hash of all available error
messages and assign it to an instance variable @error_messages in the setup function[7].
The default error message for the value that has already been taken is then found using
@error_messages[:taken]:

[7] We have to admit that we picked up ActiveRecord::Errors.default_error_messages from Agile Web Development with Rails.

def setup

@error_messages = ActiveRecord::Errors.default_error_messages

@valid_user = users(:valid_user)

@invalid_user = users(:invalid_user)

end

so that the uniqueness test becomes:

def test_uniqueness_of_screen_name_and_email

user_repeat = User.new(:screen_name => @valid_user.screen_name,

:email => @valid_user.email,

:password => @valid_user.password)

assert !user_repeat.valid?

assert_equal @error_messages[:taken], user_repeat.errors.on(:screen_name)

assert_equal @error_messages[:taken], user_repeat.errors.on(:email)

end

5.6.2. Testing Screen Name Length
Now let's test the length validation for the screen name:
file: app/model/user.rb

SCREEN_NAME_RANGE = SCREEN_NAME_MIN_LENGTH..SCREEN_NAME_MAX_LENGTH

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 135 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://phrogz.net/ProgrammingRuby/language.html#table_18.4

.

.

.

validates_length_of :screen_name, :within => SCREEN_NAME_RANGE

In this case, we are actually validating both minimum length and maximum length, so we'll
write two tests[8]:

[8] Note that, as we did in the register view (Section 4.2.4), we get access to the User model class constants by prefixing the constant names with User::.

file: test/unit/user_test.rb
Make sure the screen name can't be too short.

def test_screen_name_minimum_length

user = @valid_user

min_length = User::SCREEN_NAME_MIN_LENGTH

Screen name is too short.

user.screen_name = "a" * (min_length - 1)

assert !user.valid?, "#{user.screen_name} should raise a minimum length error"

Format the error message based on minimum length

correct_error_message = sprintf(@error_messages[:too_short], min_length)

assert_equal correct_error_message, user.errors.on(:screen_name)

Screen name is minimum length.

user.screen_name = "a" * min_length

assert user.valid?, "#{user.screen_name} should be just long enough to pass"

end

Make sure the screen name can't be too long.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 136 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

def test_screen_name_maximum_length

user = @valid_user

max_length = User::SCREEN_NAME_MAX_LENGTH

Screen name is too long.

user.screen_name = "a" * (max_length + 1)

assert !user.valid?, "#{user.screen_name} should raise a maximum length error"

Format the error message based on maximum length

correct_error_message = sprintf(@error_messages[:too_long], max_length)

assert_equal correct_error_message, user.errors.on(:screen_name)

Screen name is maximum length.

user.screen_name = "a" * max_length

assert user.valid?, "#{user.screen_name} should be just short enough to pass"

end

Note that we could have written this as one test, but then if we got an error it would be hard
to see which part failed. Also, note that each test completely tests the boundary conditions:
3 characters is too short but 4 characters is okay, and 20 characters is okay but 21 is too long
[9].

[9] Assuming, as is currently the case, that User::SCREEN_NAME_MIN_LENGTH = 4 and User::SCREEN_NAME_MAX_LENGTH = 20. In addition to being more
readable, using the class constants means that our tests will still pass even if we decide to change the lengths we allow.

The only new Ruby in these tests is sprintf and string multiplication. How do they work?
Use the Console, Luke.

5.6.3. Detour: "Use the Console, Luke."
You may very well be confused by the function sprintf in the previous section's tests. This
brings up an important question: what should you do when you encounter code you don't
understand? We saw a hint of it in Section 5.5.1, but the particular technique we talk about

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 137 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

here is so important that we're devoting an entire subsection to it. And that technique is: use
the console.
The Rails console utility gives us a great way to test in an interactive way any bits of code that
look confusing. In this case, we have a line like

correct_error_message = sprintf(@error_messages[:too_short], 4)

which probably looks quite mysterious. Let's demystify it by dropping it into the console:

> ruby script/console

Loading development environment.

>> @error_messages = ActiveRecord::Errors.default_error_messages; 0

=> 0

>> @error_messages[:too_short]

=> "is too short (maximum is %d characters)"

>> sprintf(@error_messages[:too_short], 17)

=> "is too short (maximum is 17 characters)"

>> sprintf(@error_messages[:too_short], 4)

=> "is too short (maximum is 4 characters)"

(See the box for an explanation of the trailing ; 0 in the first line.) So it turns out that the
error message for :too_short is not a normal string, but rather has a %d (for "digit") in it,
making it a template which accepts an integer, converts the integer to a string, and uses that
string to replace %d. The way we accomplish the replacement is to use "string printf", or
sprintf[10].

[10] Kids these days may not know about printf. If this is the case for you, drop "printf" into a search engine and read up on it (noting especially its origins in the C
programming language). It will be good for your programming, and good for your soul. N.B. Ruby has printf, too, but its synonym print is probably more common in
real life (though neither function rivals puts in popularity).

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 138 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Suppressing long output

The command

>> @error_messages = ActiveRecord::Errors.default_error_messages; 0

=> 0

shows a useful trick for keeping the console (or irb) from printing a long output
line (such as a list of all the Active Record default error messages). It works because
Ruby allows multiple statements on a line separated by a semicolon, and the
console only prints the last one (which in this case we chose to be 0 for simplicity).

A similar console session demystifies string multiplication:

> ruby script/console

Loading development environment.

>> min_length = 4

=> 4

>> "a" * min_length

=> "aaaa"

>> "d" + 5 * "u" + "de!"

TypeError: String can't be coerced into Fixnum

from (irb):4:in '*'

from (irb):4

>> "d" + "u" * 5 + "de!"

=> "duuuuude!

(Evidently, string "multiplication" is not commutative. That's okay—string
"addition" (concatenation) isn't either.)

5.6.4. Testing Password Length
Now that we know the secret console path to knowledge, it's time to test the password length
validation[11]:

[11] If you haven't gotten in the habit of running rake test:units after each new test, now would be a good time to start.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 139 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

file: app/model/user.rb
PASSWORD_RANGE = PASSWORD_MIN_LENGTH..PASSWORD_MAX_LENGTH

.

.

.

validates_length_of :password, :within => PASSWORD_RANGE

The password tests are similar to those for the screen name:
file: test/unit/user_test.rb

Make sure the password can't be too short.

def test_password_minimum_length

user = @valid_user

min_length = User::PASSWORD_MIN_LENGTH

Password is too short.

user.password = "a" * (min_length - 1)

assert !user.valid?, "#{user.password} should raise a minimum length error"

Format the error message based on minimum length.

correct_error_message = sprintf(@error_messages[:too_short], min_length)

assert_equal correct_error_message, user.errors.on(:password)

Password is just long enough.

user.password = "a" * min_length

assert user.valid?, "#{user.password} should be just long enough to pass"

end

Make sure the password can't be too long.

def test_password_maximum_length

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 140 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

user = @valid_user

max_length = User::PASSWORD_MAX_LENGTH

Password is too long.

user.password = "a" * (max_length + 1)

assert !user.valid?, "#{user.password} should raise a maximum length error"

Format the error message based on maximum length.

correct_error_message = sprintf(@error_messages[:too_long], max_length)

assert_equal correct_error_message, user.errors.on(:password)

Password is maximum length.

user.password = "a" * max_length

assert user.valid?, "#{user.password} should be just short enough to pass"

end

Finally, we need to test the email maximum length validation:
file: app/model/user.rb

validates_length_of :email, :maximum => EMAIL_MAX_LENGTH

The only tricky part here is constructing an email address that is just barely too long, but also
valid. Our method is to replace max_length + 1 (which we used in the screen name and
password tests to guarantee that they were barely too long) with max_length -
user.email.length + 1, and then add the resulting string to the original (valid) user
email. Given the fixture file we defined in Section 5.5, this means replacing
ram@example.com with aaa...aaaram@example.com, where there are just enough
"a" s to make the address 51 characters long[12]:

[12] Recall that EMAIL_MAX_LENGTH = 50.

file: test/unit/user_test.rb
Make sure email can't be too long.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 141 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

def test_email_maximum_length

user = @valid_user

max_length = User::EMAIL_MAX_LENGTH

Construct a valid email that is too long.

user.email = "a" * (max_length - user.email.length + 1) + user.email

assert !user.valid?, "#{user.email} should raise a maximum length error"

Format the error message based on maximum length.

correct_error_message = sprintf(@error_messages[:too_long], max_length)

assert_equal correct_error_message, user.errors.on(:email)

end

5.6.5. Testing Regexps
Having tested the magic (relatively straightforward validation) code, it's time to take a look
at the very hairy regular expression validations from our User model. Let's take a look at the
hairiest of the hairy to start with:
file: app/model/user.rb

validates_format_of :email,

:with => /^[A-Z0-9._%-]+@([A-Z0-9-]+\.)+[A-Z]{2,4}$/i,

:message => "must be a valid email address"

This definitely qualifies as hairy code, maybe even hirsute. Experienced regexp wizards know
that a single errant keystroke can wreak havoc, so let's write some tests for this beast.
We suppose it's possible to prove that a particular regexp is correct, but verifying that it works
on a bunch of test cases is probably good enough—possibly even better[13]. So, we'll use Ruby
to construct a bunch of valid and invalid email addresses, and then assign each address to
our user, which will allow us to test the email address for validity. We could do this in the
fixture, since you can actually put embedded Ruby in the YAML file, but we think it's clearest
to put it in the test. Let's do the valid addresses first:

[13] As Donald Knuth once said, "Beware of bugs in the above code; I have only proved it correct, not tried it."

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 142 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

file: test/unit/user_test.rb
Test the email validator against valid email addresses.

def test_email_with_valid_examples

user = @valid_user

valid_endings = %w{com org net edu es jp info}

valid_emails = valid_endings.collect do |ending|

"foo.bar_1-9@baz-quux0.example.#{ending}"

end

valid_emails.each do |email|

user.email = email

 assert user.valid?, "#{email} must be a valid email address"
 end
end

There's a little Ruby prestidigitation in this test, especially in the construction of the valid
email list, valid_emails. Let's apply our newfound console wisdom to figure it out:

> ruby script/console

Loading development environment.

>> valid_endings = %w{com org net edu es jp info}

=> ["com", "org", "net", "edu", "es", "jp", "info"]

>> valid_endings.collect do |ending|

?> "foo.bar_1-1@baz-quux0.example.#{ending}"

>> end

=> ["foo.bar_1-1@baz-quux0.example.com", "foo.bar_1-1@baz-quux0.example.org",

"foo.bar_1-1@baz-quux0.example.net", "foo.bar_1-1@baz-quux0.example.edu",

"foo.bar_1-1@baz-quux0.example.es", "foo.bar_1-1@baz-quux0.example.jp",

"foo.bar_1-1@baz-quux0.example.info"]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 143 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

You can see from this console session[14] that

[14] The code in question is actually pure Ruby, so you could use irb for this example as well.

%w{com org net edu es jp info}

produces an array of strings[15]. Incidentally, delimiters other than { also work, with

[15] Perl programmers will know this better as qw.

%w(com org net edu es jp info)

and even

%w/com org net edu es jp info/

giving the same result.
In the test, we use the array's collect method to take valid_endings and use it to make
a list of valid email addresses (as shown in the console above), and then we test each one in
turn. (If this style of programming is new to you, you may want read more about collect
and meditate on it a while; collect is an example of functional programming in Ruby.)
Our final email test is probably the most important, since it tests for a bunch of common (and
not-so-common) errors in email addresses. In this example, in addition to checking to make
sure that the email address is invalid, we also check that the error string produced is the same
as the one we defined in the model validation:
file: test/unit/user_test.rb

Test the email validator against invalid email addresses.

def test_email_with_invalid_examples

user = @valid_user

invalid_emails = %w{foobar@example.c @example.com f@com foo@bar..com

foobar@example.infod foobar.example.com

foo,@example.com foo@ex(ample.com foo@example,com}

invalid_emails.each do |email|

user.email = email

assert !user.valid?, "#{email} tests as valid but shouldn't be"

assert_equal "must be a valid email address", user.errors.on(:email)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 144 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

end

Note that, as in the test for valid emails, we included a string as a second argument to our
assertion:

assert !user.valid?, "#{email} tests as valid but shouldn't be"

This string will be printed out if the test fails, as you can verify by putting a valid email address
in the list of invalid emails. Also note that in assert_equal, we put the expected value first;
otherwise the error messages don't make sense.
Finally, we have screen name validation:
file: app/model/user.rb

validates_format_of :screen_name,

:with => /^[A-Z0-9_]+$/i,

:message => "must contain only letters, numbers, " +

"and underscores"

which we test in the same way we tested email addresses:
file: test/unit/user_test.rb

def test_screen_name_with_valid_examples

user = @valid_user

valid_screen_names = %w{aure michael web_20}

valid_screen_names.each do |screen_name|

user.screen_name = screen_name

assert user.valid?, "#{screen_name} should pass validation, but doesn't"

end

end

def test_screen_name_with_invalid_examples

user = @valid_user

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 145 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Test too short, invalid characters, too long.

invalid_screen_names = %w{rails/rocks web2.0 javscript:something}

invalid_screen_names.each do |screen_name|

user.screen_name = screen_name

assert !user.valid?, "#{screen_name} shouldn't pass validation, but does"

end

end

The whole file becomes:
file: test/unit/user_test.rb

require File.dirname(__FILE__) + '/../test_helper'

class UserTest < Test::Unit::TestCase

fixtures :users

def setup

@error_messages = ActiveRecord::Errors.default_error_messages

@valid_user = users(:valid_user)

@invalid_user = users(:invalid_user)

end

This user should be valid by construction.

def test_user_validity

assert @valid_user.valid?

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 146 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

This user should be invalid by construction.

def test_user_invalidity

assert !@invalid_user.valid?

attributes = [:screen_name, :email, :password]

attributes.each do |attribute|

assert @invalid_user.errors.invalid?(attribute)

end

end

One test that checks the uniqueness of both screen name and email

def test_uniqueness_of_screen_name_and_email

user_repeat = User.new(:screen_name => @valid_user.screen_name,

:email => @valid_user.email,

:password => @valid_user.password)

assert !user_repeat.valid?

assert_equal @error_messages[:taken], user_repeat.errors.on(:screen_name)

assert_equal @error_messages[:taken], user_repeat.errors.on(:email)

end

Make sure the screen name can't be too short.

def test_screen_name_minimum_length

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 147 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

user = @valid_user

min_length = User::SCREEN_NAME_MIN_LENGTH

Screen name is too short.

user.screen_name = "a" * (min_length - 1)

assert !user.valid?, "#{user.screen_name} should raise a minimum length error"

Format the error message based on minimum length

correct_error_message = sprintf(@error_messages[:too_short], min_length)

assert_equal correct_error_message, user.errors.on(:screen_name)

Screen name is minimum length.

user.screen_name = "a" * min_length

assert user.valid?, "#{user.screen_name} should be just long enough to pass"

end

Make sure the screen name can't be too long.

def test_screen_name_maximum_length

user = @valid_user

max_length = User::SCREEN_NAME_MAX_LENGTH

Screen name is too long.

user.screen_name = "a" * (max_length + 1)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 148 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

assert !user.valid?, "#{user.screen_name} should raise a maximum length error"

Format the error message based on maximum length

correct_error_message = sprintf(@error_messages[:too_long], max_length)

assert_equal correct_error_message, user.errors.on(:screen_name)

Screen name is maximum length.

user.screen_name = "a" * max_length

assert user.valid?, "#{user.screen_name} should be just short enough to pass"

end

Make sure the password can't be too short.

def test_password_minimum_length

user = @valid_user

min_length = User::PASSWORD_MIN_LENGTH

Password is too short.

user.password = "a" * (min_length - 1)

assert !user.valid?, "#{user.password} should raise a minimum length error"

Format the error message based on minimum length.

correct_error_message = sprintf(@error_messages[:too_short], min_length)

assert_equal correct_error_message, user.errors.on(:password)

Password is just long enough.

user.password = "a" * min_length

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 149 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

assert user.valid?, "#{user.password} should be just long enough to pass"

end

Make sure the password can't be too long.

def test_password_maximum_length

user = @valid_user

max_length = User::PASSWORD_MAX_LENGTH

Password is too long.

user.password = "a" * (max_length + 1)

assert !user.valid?, "#{user.password} should raise a maximum length error"

Format the error message based on maximum length.

correct_error_message = sprintf(@error_messages[:too_long], max_length)

assert_equal correct_error_message, user.errors.on(:password)

Password is maximum length.

user.password = "a" * max_length

assert user.valid?, "#{user.password} should be just short enough to pass"

end

Make sure email can't be too long.

def test_email_maximum_length

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 150 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

user = @valid_user

max_length = User::EMAIL_MAX_LENGTH

Construct a valid email that is too long.

user.email = "a" * (max_length - user.email.length + 1) + user.email

assert !user.valid?, "#{user.email} should raise a maximum length error"

Format the error message based on maximum length.

correct_error_message = sprintf(@error_messages[:too_long], max_length)

assert_equal correct_error_message, user.errors.on(:email)

end

Test the email validator against valid email addresses.

def test_email_with_valid_examples

user = @valid_user

valid_endings = %w{com org net edu es jp info}

valid_emails = valid_endings.collect do |ending|

"foo.bar_1-9@baz-quux0.example.#{ending}"

end

valid_emails.each do |email|

user.email = email

assert user.valid?, "#{email} must be a valid email address"

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 151 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

Test the email validator against invalid email addresses.

def test_email_with_invalid_examples

user = @valid_user

invalid_emails = %w{foobar@example.c @example.com f@com foo@bar..com

foobar@example.infod foobar.example.com

foo,@example.com foo@ex(ample.com foo@example,com}

invalid_emails.each do |email|

user.email = email

assert !user.valid?, "#{email} tests as valid but shouldn't be"

assert_equal "must be a valid email address", user.errors.on(:email)

end

end

def test_screen_name_with_valid_examples

user = @valid_user

valid_screen_names = %w{aure michael web_20}

valid_screen_names.each do |screen_name|

user.screen_name = screen_name

assert user.valid?, "#{screen_name} should pass validation, but doesn't"

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 152 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

end

def test_screen_name_with_invalid_examples

user = @valid_user

Test too short, invalid characters, too long.

invalid_screen_names = %w{rails/rocks web2.0 javscript:something}

invalid_screen_names.each do |screen_name|

user.screen_name = screen_name

assert !user.valid?, "#{screen_name} shouldn't pass validation, but does"

end

end

end

Running this beast from the command line should result in the following:

> rake test:units

Started

...........

Finished in 0.450406 seconds.

12 tests, 53 assertions, 0 failures, 0 errors

Damn, that's a lot of assertions!

5.6.6. Running all Tests
So far in this book we've used the rake utility many times, for many tasks. It has always taken
some sort of argument, as in rake test:units. But what if you run rake without any

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 153 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

arguments? The answer is a big indication of how test-centric Rails is—rake with no
arguments runs all the tests:

> rake

(in /rails/rails_space)

/usr/local/bin/ruby -Ilib:test "/usr/local/lib/ruby/gems/1.8/gems/rake-

0.7.1/lib/rake/rake_test_loader.rb" "test/unit/user_test.rb"

Loaded suite /usr/local/lib/ruby/gems/1.8/gems/rake-0.7.1/lib/rake/rake_test_loader

Started

............

Finished in 0.332547 seconds.

12 tests, 53 assertions, 0 failures, 0 errors

/usr/local/bin/ruby -Ilib:test "/usr/local/lib/ruby/gems/1.8/gems/rake-

0.7.1/lib/rake/rake_test_loader.rb" "test/functional/user_controller_test.rb" "test/
functional/site_

Loaded suite /usr/local/lib/ruby/gems/1.8/gems/rake-0.7.1/lib/rake/rake_test_loader

Started

......

Finished in 0.207768 seconds.

6 tests, 30 assertions, 0 failures, 0 errors

/usr/local/bin/ruby -Ilib:test "/usr/local/lib/ruby/gems/1.8/gems/rake-

0.7.1/lib/rake/rake_test_loader.rb"

Already we have 18 tests with 81 assertions! If we're curious about just how good our test
coverage is, there's one more rake task worth running:

> rake stats

(in /rails/rails_space)

+----------------------+-------+-------+---------+---------+-----+-------+

| Name | Lines | LOC | Classes | Methods | M/C | LOC/M |

+----------------------+-------+-------+---------+---------+-----+-------+

| Controllers | 39 | 30 | 3 | 5 | 1 | 4 |

| Helpers | 12 | 10 | 0 | 1 | 0 | 8 |

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 154 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

| Models | 30 | 23 | 1 | 0 | 0 | 0 |

| Libraries | 0 | 0 | 0 | 0 | 0 | 0 |

| Components | 0 | 0 | 0 | 0 | 0 | 0 |

| Integration tests | 0 | 0 | 0 | 0 | 0 | 0 |

| Functional tests | 127 | 104 | 4 | 10 | 2 | 8 |

| Unit tests | 161 | 113 | 1 | 13 | 13 | 6 |

+----------------------+-------+-------+---------+---------+-----+-------+

| Total | 369 | 280 | 9 | 29 | 3 | 7 |

+----------------------+-------+-------+---------+---------+-----+-------+

Code LOC: 63 Test LOC: 217 Code to Test Ratio: 1:3.4

Our test code is over three times larger than our application code! Does that seem a bit
ridiculous? It's certainly a little on the high side—we're erring on the side of caution at the
start—but it's not insane. In general, a high test-to-code ratio is a sign that the application is
thoroughly tested.

6. Logging in and out

In Chapter 4, we implemented a rudimentary default user page, and we promised to restrict
access to this page based on the user's login status. This is the first of two chapters fulfilling
that promise. In this chapter, we develop a basic login and authentication system, and in
Chapter 7 we implement a more advanced system with cookie-based "remember me"
functionality.
While it's certainly possible to implement a simple login system using relatively little code,
taking the time to build an industrial-strength authentication system is well worth the effort.
After all, virtually every web application requires some sort of login machinery for its
operation. Moreover, authentication offers a rich variety of problems whose solutions touch
virtually every aspect of web programming: forms, database interaction, sessions, cookies,
request variables, and more. Of course, the requirements for an authentication system
depend on the nature of the application; we hope the code in these next two chapters can
serve as a foundation for whatever sort of login system fits your needs.
Because of the complexity of the RailsSpace authentication system, these two chapters taken
together also offer a chance to see the value of keeping our code shiny and beautiful through

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 155 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

refactoring, which involves changing the appearance of the code without altering what it
does. As part of this effort, we'll write tests for all of our new actions and views, thereby giving
us confidence that the essential function of RailsSpace remains unchanged even as we
change its form.

6.1. Maintaining State with Sessions
Logging a user in is a specific example of the more general problem of maintaining state
from page to page. If a user logs in on one page, for example, somehow we need to keep
track of that information, so that when he tries to access a protected page his logged-in status
will allow him to see it. Rails provides a special variable called session for just this purpose.
To the programmer, session looks just like a hash, and you can assign to it like this:

session[:user_id] = user.id

(Note that we follow the Rails convention of using Ruby symbols for hash keys.) Once we've
put a value in the session, it will be available to us even when our user visits another page
on the site.

6.1.1. Setting up Database Sessions
By default, Rails uses disk-based sessions—that is, the session information is written to a file
on the server's local disk, and is then retrieved using a special session cookie that Rails places
on the user's browser. In other words, when you assign a value to a session key, Rails writes
that information to the server's hard disk with a session label, and it puts the same label into
a cookie on the user's browser. When the user visits another page, Rails uses that cookie to
look up the session information from the disk. This creates the illusion of a variable that
persists from page to page.
Rails sessions work right out of the box; you can use the session variable without any special
configuration. We prefer to use database-based sessions, though, which are faster than files
under heavy load and can be used easily with multiple webservers (Fig 6.1)[1]. (Disk-based
sessions won't work well with multiple servers, since one request might hit server A while a
second request might hit server B—thereby losing the session, which is stored in a file on
server A.) Though a single server is sufficient for many applications, setting up a session
mechanism that works for multiple servers is quite easy, and it unties that knot in the pit of
your stomach that comes from worrying what happens when you're so successful that you
have to set up a bunch of servers. When sessions are stored in the database, all the webservers
can talk to the same database server, so all requests will have access to the session
information[2].

[1] For very heavy loads, Rails supports the memcached system; see http://wiki.rubyonrails.com/rails/pages/MemCached.

[2] Eventually, if your site is very successful, you will need multiple database back-ends as well, but this is beyond the scope of a web application framework. That's a problem
you have to solve by scaling out your database infrastructure.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 156 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://wiki.rubyonrails.com/rails/pages/MemCached

Figure 6.1. A typical multiple webserver, single database server setup.

Rails provides a method (called ActiveRecordStore) to make it easy store sessions in the
database using Active Record. Here's how:

1. Run rake db:sessions:create
> rake db:sessions:create

(in /rails/rails_space)

exists db/migrate

create db/migrate/003_add_sessions.rb

2. In config/environment.rb, uncomment the line

config.action_controller.session_store = :active_record_store

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 157 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

3. Run rake db:migrate
> rake db:migrate

(in /rails/rails_space)

== AddSessions: migrating ==

-- create_table(:sessions)

-> 0.3567s

-- add_index(:sessions, :session_id)

-> 0.4498s

== AddSessions: migrated (0.8079s) ===

4. Restart the webserver

You'll note that step 3 creates a new table in your database called sessions. In the future,
if random weird stuff having anything to do with sessions goes wrong, try clearing the
sessions table. This simple trick could save you much pain and hand-wringing.

6.2. Logging in
Now that we have our sessions set up the way we like, it's time to implement a method for
tracking user login status. In the process, we'll introduce some helpful debugging hints and
develop tests for our new login machinery.

6.2.1. Tracking Login Status
We could use a separate session variable dedicated to storing login status, but we'll follow
the common and efficient convention of storing the current user id (if any) in the session,
like so:

session[:user_id] = user.id

As we mentioned in Section 2.4.4, a hash returns nil if no value corresponds to the given
key. This means that we can use nil to mean "no user is logged in". If, on the other hand,
we've put the user id in the session, then the value will not be nil, and we'll know that the
user has logged in. Moreover, we can use the value itself to retrieve the user's information
from the database (the first example is in Section 8.2).

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 158 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

6.2.2. Registration Login
We'll create a separate login page shortly, but we can apply our login-tracking technique
immediately by updating the register action so that newly registered users are automatically
logged in:
file: app/controllers/user_controller.rb

class UserController < ApplicationController

def index

end

def register

@title = "Register"

if request.post? and params[:user]

@user = User.new(params[:user])

if @user.save

session[:user_id] = @user.id

flash[:notice] = "User #{@user.screen_name} created!"

redirect_to :action => "index"

end

end

end

end

We should also test this code by adding a couple of lines to the registration test, one to check
that the user id in the session is not nil, and another to verify that session user id matches
the actual user id:
file: /test/functional/user_controller_test.rb

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 159 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Test a valid registration.

def test_registration_success

post :register, :user => { :screen_name => "new_screen_name",

:email => "valid@example.com",

:password => "long_enough_password" }

Test assignment of user.

user = assigns(:user)

.

.

.

Make sure user is logged in properly.

assert_not_nil session[:user_id]

assert_equal user.id, session[:user_id]

end

6.2.3. Debugging with the Session Variable
When developing Rails applications, it is sometimes useful to be able to see the contents of
the session. Recall from Section 4.2.5 that we put the params variable debug information in
the layout; we can do the same with session:
file: app/views/layouts/application.rhtml

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<body>

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 160 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

.

<% if ENV["RAILS_ENV"] == "development" %>

<%= debug(params) %>

<%= debug(session) %>

<% end %>

</div>

</body>

</html>

Now Rails dumps a human-readable representation of the session when running in
development mode. Let's register a new user and take a look at the resulting session (Fig.
6.2). Note that there is now a key called :user_id with value equal to 2 (or some higher
number if you've created more users in the process of experimenting with registration).

Figure 6.2. Session information when registering a new user.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 161 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyb25pal9wLm1zZWg2X2MvX3Nzc3VhZHBwbF90ZzJp

Unfortunately, the session information is typically long enough that it really clutters up the
screen. Let's add a refinement to our debug information by making a link to the debug dumps
and only displaying one if we click on the link:
file: app/views/layouts/application.rhtml

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<head>

<title><%= @title %></title>

<%= stylesheet_link_tag "site" %>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 162 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<%= javascript_include_tag :defaults %>

</head>

<body>

.

.

.

</div>

<% if ENV["RAILS_ENV"] == "development" %>

<div id="debug">

params |

session

<fieldset id="params_debug_info" class="debug_info" style="display: none">

<legend>params</legend>

<%= debug(params) %>

</fieldset>

<fieldset id="session_debug_info" class="debug_info" style="display: none">

<legend>session</legend>

<%= debug(session) %>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 163 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

</fieldset>

</div>

<% end %>

</body>

</html>

Be sure to note the line <%= javascript_include_tag :defaults %>, which loads
the default JavaScript files included with Rails, including the Element function we use here
[3] Also note that we're taking the debug information out of the content div element so that
the development information is clearly separated from the regular page. Once you've added
these lines to the layout, you can style the debug output by putting the following lines in
the site CSS file:

[3] We'll use many more of the Rails JavaScript functions starting in Chapter 9.

file: public/stylesheets/site.css
/* Debug Style */

#debug {

margin-top: 1em;

margin-left: auto;

}

#debug a, #debug a.visited {

text-decoration: none;

color: maroon;

}

fieldset.debug_info {

text-align: left;

margin: 1em;

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 164 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

background: #eee;

}

Together, the extra layout markup and CSS rules give us debug links at the bottom of the
page (Fig. 6.3), which can be clicked to open and close the corresponding debug displays
(Fig. 6.4).

Figure 6.3. Debug links appear at the bottom, separated from the content.

[View full size image]

Figure 6.4. Debug information display when both params and session are clicked.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 165 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyX2Jnal9wLnJzZWg2X2MvX2J1ZG9hZnBlbGV0ZzNp
http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyX2FncGFwcmpzZWg2X2MvYl91ZGVsdGdfdGYuNGk-

6.2.4. Login View and Action
Now that we've decided on a method for keeping track of user login status, let's put the login
function on the site. First, we'll change the top navigation in the layout file to make a link to
the login function:
file: app/views/layouts/application.rhtml

.

.

.

<div id="nav">

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 166 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<%= nav_link "Register", "user", "register" %> |

<%= nav_link "Login", "user", "login" %>

<%= nav_link "Home", "site" %> |

<%= nav_link "About Us", "site", "about" %> |

<%= nav_link "Help", "site", "help" %>

</div>

.

.

.

Next, we'll make a login view using the same basic idea as the register function from Chapter
3:
file: app/views/user/login.rhtml

<h2>Log in</h2>

<% form_for :user do |form| %>

<fieldset>

<legend>Enter Your Details</legend>

<div class="form_row">

<label for="screen_name">Screen name:</label>

<%= form.text_field :screen_name,

:size => User::SCREEN_NAME_SIZE,

:maxlength => User::SCREEN_NAME_MAX_LENGTH %>

</div>

<div class="form_row">

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 167 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<label for="password">Password:</label>

<%= form.password_field :password,

:size => User::PASSWORD_SIZE,

:maxlength => User::PASSWORD_MAX_LENGTH %>

</div>

<div class="form_row">

<%= submit_tag "Login!", :class => "submit" %>

</div>

</fieldset>

<% end %>

<p>

Not a member? <%= link_to "Register now!", :action => "register" %>

</p>

The result appears in Fig. 6.5.

Figure 6.5. Login page.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 168 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyXzFuanB0c2hvXzZjL19naWxscGEuZ181aQ--

The login action also resembles its registration counterpart:
file: app/controllers/user_controller.rb

def login

@title = "Log in to RailsSpace"

if request.post? and params[:user]

@user = User.new(params[:user])

user = User.find_by_screen_name_and_password(@user.screen_name,

@user.password)

if user

session[:user_id] = user.id

flash[:notice] = "User #{user.screen_name} logged in!"

redirect_to :action => "index"

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 169 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

else

Don't show the password in the view.

@user.password = nil

flash[:notice] = "Invalid screen name/password combination"

end

end

end

You might notice one subtle difference between the login action and the register action: in
the login function, we have two user variables—user and @user—instead of just @user.
Their uses are quite different. The user variable is retrieved from the database; it's either
nil or a valid registered user. In contrast, @user can be virtually anything, since it is
constructed from the parameters submitted by the user using the login form. This second
variable, because it begins with the '@' symbol, is an instance variable, which means that it
is visible in the view. In fact, it plays the same role as it did in the registration form (Section
4.3.1), filling in the screen name and password fields with the results of the previous
submission.
A typical practice for login pages with an incorrect submission is to show the screen name
again but not to show the password (it's just a bunch of asterisks anyway, so it wouldn't be
very useful to show it again), so before showing the page again, we set the password for
@user back to nil[4]. Rails interprets nil a blank, so the corresponding password field will
simply be the empty string.

[4] It's important to understand that @user is a Ruby variable that exists in memory, so setting its password attribute to nil doesn't affect the database at all.

As in the case of the register function, we use request.post? and params[:user] to
tell if the user submitted a POST request with a non-nil value for params[:user]. We
then define the user instance variable @user, both for readability and for reuse in the login
view if the authentication is not successful. To authenticate the user's submission, we look
in the database to find a user with a matching screen name and password:

user = User.find_by_screen_name_and_password(screen_name, password)

We saw this function in the test for successful registration in Section 5.4.3, where we used it
to verify that the user created in-memory by the registration action matched the user saved
to the database, which we retrieved with this function.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 170 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Here, we use find_by_screen_name_and_password for essentially the same purpose,
only in this case we also use the results to test whether the user is in the database at all. The
Rails find_by functions return nil if they are unable to find a matching record in the
database, so user is nil if the login is unsuccessful.

6.2.5. Testing Valid Login
Now that we have functioning login views and actions, it's time to apply our hard-won testing
expertise from Chapter 5 to test them. We're going to need a valid user object for these tests,
so it makes sense to use the fixtures file from the User model test (Section 5.5) to create a
user instance variable. That means we need to include the users fixture with
fixtures :users, and then make an @valid_user variable in the setup function using

@valid_user = users(:valid_user)

With these additions, the first part of the User controller test looks like this:
file: tests/functional/user_controller_test.rb

require File.dirname(__FILE__) + '/../test_helper'

require 'user_controller'

Re-raise errors caught by the controller.

class UserController; def rescue_action(e) raise e end; end

class UserControllerTest < Test::Unit::TestCase

fixtures :users

def setup

@controller = UserController.new

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

This user is initially valid, but we may change its attributes.

@valid_user = users(:valid_user)

end

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 171 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

The test for the login page itself is nearly identical to the corresponding registration test from
Section 5.4.2, including tests for both the size and maxlength attributes using the
constants from the User model:
file: tests/functional/user_controller_test.rb

Make sure the login page works and has the right fields.

def test_login_page

get :login

title = assigns(:title)

assert_equal "Log in to RailsSpace", title

assert_response :success

assert_template "login"

assert_tag "form", :attributes => { :action => "/user/login",

:method => "post" }

assert_tag "input",

:attributes => { :name => "user[screen_name]",

:type => "text",

:size => User::SCREEN_NAME_SIZE,

:maxlength => User::SCREEN_NAME_MAX_LENGTH }

assert_tag "input",

:attributes => { :name => "user[password]",

:type => "password",

:size => User::PASSWORD_SIZE,

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 172 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

:maxlength => User::PASSWORD_MAX_LENGTH }

assert_tag "input", :attributes => { :type => "submit",

:value => "Login!" }

end

Along with the standard flash and redirect tests, testing login success simply involves making
sure that the relevant session variable (session[:user_id]) is both not nil, indicating
that a user is logged in, and equal to the correct user id:
file: tests/functional/user_controller_test.rb

Test a valid login.

def test_login_success

try_to_login @valid_user

assert_not_nil session[:user_id]

assert_equal @valid_user.id, session[:user_id]

assert_equal "User #{@valid_user.screen_name} logged in!", flash[:notice]

assert_redirected_to :action => "index"

end

private

Try to log a user in using the login action.

def try_to_login(user)

post :login, :user => { :screen_name => user.screen_name,

:password => user.password }

end

Note that we've created a function that tries to log a user in by posting to the login action
(labeled private since it is only used internally by the User controller test). We could have put
the raw code in the test itself, of course, but we anticipate that many tests will need the same

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 173 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

function—and, indeed, this little try_to_login function will be put to good use
immediately in the next section.
We can run our new login tests by passing a regular expression to Ruby:

> ruby test/functional/user_controller_test.rb -n /test_login/

Loaded suite test/functional/user_controller_test

Started

..

Finished in 0.123146 seconds.

2 tests, 11 assertions, 0 failures, 0 errors

6.2.6. Testing Invalid Login
Having verified that a valid user can log in successfully, we need to test for a login failure.
There are two failure modes for logging in: an invalid screen name, and an invalid password.
Let's test both cases:
file: tests/functional/user_controller_test.rb

Test a login with invalid screen name.

def test_login_failure_with_nonexistent_screen_name
 invalid_user = @valid_user
 invalid_user.screen_name = "no such user"
 try_to_login invalid_user
 assert_template "login"
 assert_equal "Invalid screen name/password combination", flash[:notice]
 # Make sure screen_name will be redisplayed, but not the password.
 user = assigns(:user)
 assert_equal invalid_user.screen_name, user.screen_name
 assert_nil user.password
end

Test a login with invalid password.
def test_login_failure_with_wrong_password
 invalid_user = @valid_user
 # Construct an invalid password.
 invalid_user.password += "baz"
 try_to_login invalid_user
 assert_template "login"
 assert_equal "Invalid screen name/password combination", flash[:notice]
 # Make sure screen_name will be redisplayed, but not the password.
 user = assigns(:user)
 assert_equal invalid_user.screen_name, user.screen_name
 assert_nil user.password
end

This gives

> ruby test/functional/user_controller_test.rb -n /test_login_failure/

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 174 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Loaded suite test/functional/user_controller_test

Started

..

Finished in 0.119785 seconds.

2 tests, 8 assertions, 0 failures, 0 errors

At this point we can also check our progress by running only the recently changed test files
(those that have changed within the last ten minutes):

> rake recent

(in /rails/rails_space)

Started

.......

Finished in 0.21661 seconds.

7 tests, 42 assertions, 0 failures, 0 errors

Your results may vary depending on how quickly you're working through the chapter.

6.3. Logging Out
Having given users a way to log in, we certainly need to give them a way to log out as well.
The logout action is very simple; since we're using nil to indicate that no one is logged in,
we just need to set session[:user_id] to nil, fill the flash with an appropriate message,
and then redirect to the index page of the site:
file: app/controllers/user_controller.rb

def logout

session[:user_id] = nil

flash[:notice] = "Logged out"

redirect_to :action => "index", :controller => "site"

end

Since logged-in users no longer need to register or log in, but do need to be able to log out,
let's change the top navigation bar to reflect that:
file: app/views/layouts/application.rhtml

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 175 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

.

<div id="nav">

<% if session[:user_id] -%>

<%= nav_link "Hub", "user", "index" %> |

<%= nav_link "Logout", "user", "logout" %>

<% else -%>

<%= nav_link "Register", "user", "register" %> |

<%= nav_link "Login", "user", "login" %>

<% end -%>

<%= nav_link "Home", "site" %> |

<%= nav_link "About Us", "site", "about" %> |

<%= nav_link "Help", "site", "help" %>

</div>

.

.

.

Here we've also added a link to the user hub for convenience. Now when you log in you see
the login and registration links disappear, with the hub and logout links taking their place
(Fig. 6.6).

Figure 6.6. Login dependendent navigation bar.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 176 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyZF90ZXBnYXNobzZfYy9fZ2dsXy5ubGppcDZp

6.3.1. Testing Logout
The logout test is fairly straightforward; after logging in (and checking that session
[:user_id] is initially not nil), we get the log out action, check for the proper redirect
and flash notice, and finally check to make sure that session[:user_id] has been set to
nil:
file: test/functional/user_controller_test.rb

.

.

.

Test the logout function.

def test_logout

try_to_login @valid_user

assert_not_nil session[:user_id]

get :logout

assert_response :redirect

 assert_redirected_to :action => "index", :controller => "site"
 assert_equal "Logged out", flash[:notice]
 assert_nil session[:user_id]
end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 177 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

This gives

> ruby test/functional/user_controller_test.rb -n test_logout

Loaded suite test/functional/user_controller_test

Started

.

Finished in 0.099663 seconds.

1 tests, 5 assertions, 0 failures, 0 errors

6.3.2. Testing Navigation
Since we want to make sure that our navigation links actually change appropriately based
on login status, we should (as always) write some tests. First, we'll test the navigation before
logging in. We'll use the index page of the Site controller, checking to make sure that the
register and login links are both present, and that there is no link for "Home" (since
link_to_unless_current should suppress any links to the current page). We can do
this with the :content option to assert_tag, which matches the content of the tag
against the given regular expression:
file: test/functional/site_controller_test.rb

Test the navigation menu before login.

def test_navigation_not_logged_in

get :index

assert_tag "a", :content => /Register/,

:attributes => { :href => "/user/register" }

assert_tag "a", :content => /Login/,

:attributes => { :href => "/user/login" }

Test link_to_unless_current.

assert_no_tag "a", :content => /Home/

end

(If this test doesn't pass, make sure you put it in the test file for the Site controller, not the
User controller.)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 178 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Second, we'll test the changes to navigation after logging in (as implemented in Section
6.3). We'll have to log in a valid user; since the User controller test file already has such a user,
we'll put the test there. Although we could use try_to_login to log the user in, instead
we'll define a second function, authorize:
file: test/functional/user_controller_test.rb

private

.

.

.

Authorize a user.

def authorize(user)

@request.session[:user_id] = user.id

end

The authorize function introduces an essential idea for writing tests involving the session
variable: in tests, assignments to the session variable must use @request.session, not
simply session. (Refer to Section 7.4.2 to see the kind of mischief this can cause.)
Having authorize in addition to try_to_login helps to distinguish between two cases:
(1) tests that require actually posting to the login action (which may or may not successfully
log a user in) and (2) tests that require a valid user to be logged in (as indicated by the value
of session[:user_id]). In addition to making a useful conceptual distinction, separating
trying to login from user authorization will pay dividends starting in Chapter 9, where the
tests require a logged-in user but are unable to call the login action[5].

[5] Functional tests can only call actions inside the controller they test.

With the authorize function in hand, we are now in a position to write the test for the post-
login changes to the navigation menu. The changes we need to verify are very simple—make
sure that a logout link has appeared, and that both the register and login links have
disappeared:
file: test/functional/user_controller_test.rb

Test the navigation menu after login.

def test_navigation_logged_in

authorize @valid_user

get :index

assert_tag "a", :content => /Logout/,

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 179 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

:attributes => { :href => "/user/logout" }

assert_no_tag "a", :content => /Register/

assert_no_tag "a", :content => /Login/

end

Runing the test gives

> ruby test/functional/user_controller_test.rb -n test_navigation_logged_in

Loaded suite test/functional/user_controller_test

Started

.

Finished in 0.539325 seconds.

1 tests, 3 assertions, 0 failures, 0 errors

Of course, we could test all of the other navigation links as well. We could also test the
navigation on all our other pages, and also check to make sure that the current page never
has a link to itself. The testing facilities included with Rails are so powerful that, at a certain
point, you realize you could just go completely nuts and test every nook and cranny of the
site. Deciding where to stop is a matter of judgment; we think we've covered everything in
the site that could plausibly break, so we've decided to stop here (for now).

6.4. Protecting Pages
The principal use for login and authentication is to restrict access to certain pages on a site.
Let's create a stub protected page, which we will use expressly for the purpose of
implementing page protection separate from any other functionality. We plan to use the
index page as the hub of the user's logged in experience, so let's protect it first.
file: app/controllers/user_controller.rb

def index

@title = "RailsSpace User Hub"

This will be a protected page for viewing user information.

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 180 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

6.4.1. Protecting Pages the Stupid Way
Our basic strategy for protecting pages will be to check to see if the user is logged in and, if
not, redirect to the login page. The quick-and-dirty way to protect the edit_profile action
is to put the protection machinery right in the function:
file: app/controllers/user_controller.rb

def index

unless session[:user_id]

flash[:notice] = "Please log in first"

redirect_to :action => "login"

return

end

@title = "RailsSpace User Hub"

This will be a protected page for viewing user information.

end

Notice that we have an explicit call to return; this is a subtle point which could bite you
some day (see box). Also note that, as in Section 6.2.4, we're relying on session
[:user_id] being nil when a user is not logged in, so that unless session
[:user_id] is false when there is no user logged in.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 181 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Redirecting and returning

You may have noticed that in the protected index page we have an explicit call
to return after redirecting:

redirect_to :action => "login"

return

This is because a redirect does not immediately return (which is a property of HTTP
and not a limitation of Rails). So far in this book, we've always used redirects in a
context where the next line of the function executed was simply the end of the
function, which contains an implicit return. In the present case, though, anything
after the unless block would be executed:

def index

unless session[:user_id]

flash[:notice] = "Please log in first"

redirect_to :action => "login"

Uh oh, no return!

end

@user = User.find(session[:user_id])

@title = "RailsSpace User Hub"

This will be a protected page for viewing user information.

end

This code will break, since if the session's user id is nil there will be no valid user
to find, and User.find will raise an exception.
We can avoid such brittle code by putting the authentication code in a function
and calling it with a before_filter—a technique we cover in Section 6.4.2

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 182 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

6.4.2. Protecting Pages the Smart Way
Since any site with one protected page is likely to have many, putting the authentication
machinery on every protected page would be a tremendous waste of effort and a blatant
violation of the DRY principle.
Rails has a facility to accomplish just this sort of task much more elegantly using a function
called before_filter[6]. By placing our authentication code in a function called
protect, and then putting before_filter :protect inside the User controller, Rails
will know to call the authorization function before serving up any action in the controller:

[6] The before_filter function is but one piece of a more general filter framework, which makes it possible to execute a chain of functions before and after actions in a
controller. Additional functions following the same basic syntax as before_filter include after_filter and around_filter (a combination before/after filter);
see http://rubyonrails.org/api/classes/ActionController/Filters/ClassMethods.html for more information.

file: app/controllers/user_controller.rb
class UserController < ApplicationController

before_filter :protect

.

.

.

def index

@title = "RailsSpace User Hub"

This will be a protected page for viewing user information.

end

.

.

.

private

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 183 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://rubyonrails.org/api/classes/ActionController/Filters/ClassMethods.html

Protect a page from unauthorized access.

def protect

unless session[:user_id]

flash[:notice] = "Please log in first"

redirect_to :action => "login"

return false

end

end

end

Note that the line unless session[:user_id] works since nil is false, but this code is
suspect for several reasons (see box).
It's also important to note that we've included return false after the redirect in
protect. This is because Rails uses before_filter to build up a chain of filters, executing
each one in turn. In later chapters, we will sometimes have more than one function in the
chain, and these functions might require a logged-in user; it's therefore important for
protect to break the chain if the user isn't logged in. The way to do this is to return false.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 184 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

You may recall from Section 6.2.4 that nil is false in a boolean context, which is
why can write

unless session[:user_id]

in protect instead of

unless session[:user_id] == nil

or

unless session[:user_id].nil?

This could conceivably bite you someday, and you can make a good argument
for using session[:user_id].nil?, even if it seems a bit pedantic. The
problem with saying unless session[:user_id] is that it doesn't say what
we really mean: we wish to use niland onlynil as a special value to indicate
"nothing". Moreover, it exposes unnecessarily our mechanism for keeping track
of login status. As a result, it doesn't read at all like sensible English (which is how
Ruby should read in the ideal case). This sort of thing may not bother you, but it
does bother us[7], and we'll clean things up in Section 6.6.

[7] Especially Michael.

This protection machinery looks fine, but it won't work quite right. By default, a
before_filter will be run on all actions in a controller, which in our case would include
register and (even more perversely) login itself. Rails anticipates this situation by
allowing us to pass an optional hash to before_filter, which can either specify which
pages to filter, or which pages not to filter. We can include particular pages explicitly like so:

before_filter :protect, :only => :index

Or we can exclude one or more pages:

before_filter :protect, :except => [:login, :register]

By the way, we can specify the included pages using symbols (as shown) or as strings; either
will work (see box).
Since our only protected page right now is index, we'll go with the :only formulation for
now; if the number of protected pages gets too large, we'll switch to the :except option:
file: app/controllers/user_controller.rb

class UserController < ApplicationController

before_filter :protect, :only => :index

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 185 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

.

Symbols vs. strings

In our before filter code, we wrote

before_filter :protect, :only => :index

but

before_filter :protect, :only => "index"

works just as well. In fact, there are many places in Rails where symbols and strings
are interchangeable; another example is in the link_to function, where

link_to "Login", :controller => "user", :action => "login"

and

link_to "Login", "controller" => "user", "action" => "login"

are equivalent.
Our tendency is to use symbols when possible, but you will encounter a variety
of conventions in Rails code; ultimately the decision is a matter of personal taste.

6.4.3. Testing Protection
Testing our protection machinery is simple. First, we'll get a protected page, and then make
sure that we were prompted to log in:
file: test/functional/user_controller_test.rb

Test index page for unauthorized user.

def test_index_unauthorized

Make sure the before_filter is working.

get :index

assert_response :redirect

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 186 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

assert_redirected_to :action => "login"

assert_equal "Please log in first", flash[:notice]

end

Second, we'll get the same protected page as an authorized user and assert a :success
response instead of a redirect:
file: test/functional/user_controller_test.rb

Test index page for authorized user.

def test_index_authorized

authorize @valid_user

get :index

assert_response :success

assert_template "index"

end

Here are the results[8]:

[8] The assertions here don't add up. For reasons we don't understand, assert_redirected_to counts as two assertions in this context.

> ruby test/functional/user_controller_test.rb -n /test_index_/

Loaded suite test/functional/user_controller_test

Started

..

Finished in 0.315019 seconds.

2 tests, 5 assertions, 0 failures, 0 errors

6.5. Friendly URL Forwarding
There's one final flourish we'd like to add to our basic login functionality. One of our pet
peeves is when we go to the front page of a site, click on a link for protected page, are
prompted to login, and then get forwarded back to the front page rather than the page we
originally requested. This is lame, lame, lame. Obviously, the site should remember the
protected page we requested and then forward us there after logging in. Let's implement
(and test) this feature, which we call "friendly forwarding".

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 187 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

6.5.1. The Request Variable
In order to pull this trick off, we have to figure out which page the user is trying to view. This
is a job for HTTP, which maintains a bunch of variables with information about each request,
including the browser type (HTTP_USER_AGENT), the IP number where the request is
coming from (REMOTE_ADDR), and the address of the page requested (REQUEST_URI).
We've used request many times now to test for GET versus POST requests, but there's a lot
more to it; we can view all the information in the request variable by putting it at the bottom
of the debug section of the layout:
file: app/views/layouts/application.rhtml

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<body>

.

.

.

<% if ENV["RAILS_ENV"] == "development" %>

<div id="debug">

params |

session |

env |

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 188 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

request

<fieldset id="params_debug_info" class="debug_info" style="display: none">

<legend>params</legend>

<%= debug(params) %>

</fieldset>

<fieldset id="session_debug_info" class="debug_info" style="display: none">

<legend>session</legend>

<%= debug(session) %>

</fieldset>

<fieldset id="env_debug_info" class="debug_info" style="display: none">

<legend>env</legend>

<%= debug(request.env) %>

</fieldset>

<fieldset id="request_debug_info" class="debug_info" style="display: none">

<legend>request</legend>

<%= debug(request) %>

</fieldset>

</div>

<% end %>

</body>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 189 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

</html>

Now visit (say) the "About Us" page and click on the request link. The resulting data dump
is rather intimidating (Fig. 6.7), but with experience you can learn to parse this visually and
find all manner of useful things. In particular, if you use your browser's text search to look for
REQUEST_URI[9], you'll see that it always contains the address of the page requested, which
in this case is http://localhost:3000/site/about. If you look closely at the request environment
information (Fig. 6.8), you can see that REQUEST_URI is actually a hash key inside of an
instance variable called @env_table. Rails lets you access this through the attribute
request.env_table, so that

[9] URI is pretentious-talk for URL. Well, actually, a Uniform Resource Identifier is more general than a Uniform Resource Locator, but when it comes to URL terminology we
are decidedly old-school.

request.env_table["REQUEST_URI"]

Figure 6.7. The full request dump with REQUEST_URI highlighted.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 190 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyc3Rlal9wLm1zZWg2X2MvX3F1cnVhZHBwbF90Zzdp

Figure 6.8. The full request dump with env_table highlighted.

[View full size image]

is the request URL. In practice, you will usually use the interface provided by the request
variable (see below), but we mention how to get to the request URL using the raw
environment table in case you ever have to puncture the abstraction layer to get at a variable
not exposed by request.
Because the environment variables are so useful, our debug javascript also includes a way
to just so the environment information, as show in Figure 6.9.

Figure 6.9. The environment hash displayed separate from the request.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 191 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyYWJ0dHBnYXNobjZfYy9fdl9lXy5lbGpscDhp
http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyX2EyZ3Bqc25oNl8vY192X2UudHBsOWk-

While grabbing the request as above will usually work, idiomatically correct Rails uses instead
request.request_uri[10], which is a function provided by the class for request objects,
AbstractRequest[11]. It's not identical to request.env_table["REQUEST_URI"], but it's
close: Rails is smart enough to strip off the opening http://localhost:3000 from the URL, since
on the local site that information is superfluous. In our example, request.request_uri
is simply /site/about, which you can find out by putting

[10] Using request.env_table["REQUEST_URI"] breaks on Microsoft's IIS web server (it's just a blank), but request.request_uri works fine.

[11] It's worth going to the Rails API entry for AbstractRequest to see you what other request variables and functions the request object has; see http://api.rubyonrails.org/
classes/ActionController/AbstractRequest.html

raise request.request_uri.inspect

in the about action.

6.5.2. Friendly Login Forwarding
Now that we know how to get the request URL, let's update the protect function to capture
it in a session variable so that we can forward the user there after successfully logging in.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 192 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://api.rubyonrails.org/classes/ActionController/AbstractRequest.html
http://api.rubyonrails.org/classes/ActionController/AbstractRequest.html

We'll put the request URL for the protected page in the session under the
symbol :protected_page:
file: app/controllers/user_controller.rb

def protect

unless session[:user_id]

session[:protected_page] = request.request_uri

flash[:notice] = "Please log in first"

redirect_to :action => "login"

return false

end

end

Then, in the login action, instead of redirecting blindly to the index page, we'll redirect to the
forwarding URL:
file: app/controllers/user_controller.rb

def login

@title = "Log in to RailsSpace"

if request.post? and params[:user]

@user = User.new(params[:user])

user = User.find_by_screen_name_and_password(@user.screen_name,

@user.password)

if user

session[:user_id] = user.id

flash[:notice] = "User #{user.screen_name} logged in!"

if (redirect_url = session[:protected_page])

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 193 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 session[:protected_page] = nil
 redirect_to redirect_url
 else
 redirect_to :action => "index"
 end
 else
 # Don't show the password again in the view.
 @user.password = nil
 flash[:notice] = "Invalid screen name/password combination"
 end
 end
end

The line

if (redirect_url = session[:protected_page])

may look a bit confusing. It simultaneously makes an assignment to the redirect_url and
tests to see if it's nil. Even though a simultaneous assignment/test saves a line of code, we
don't particularly like this style of coding, which seems to us overly terse and way too much
like C[12]. It's relatively common, though, so we thought it would be a good idea to introduce
it.

[12] Another reason is that we're both retreaded Python programmers, and Python doesn't allow this construction.

We'd also like to note how smart redirect_to is. Up till now, we've always redirected using
an options hash with an action and possibly a controller, like so:

redirect_to :action => "login", :controller => "user"

As we saw in Section 6.5.1, request.request_uri is of the form /site/about, which
is quite different. Happily, redirect_to can also accept a literal URL:

redirect_to "/site/about"

does just what you'd expect.

6.5.3. Friendly Register Forwarding
Friendly forwarding from the login action is an obvious step, but we can add a nice detail by
implementing the same forwarding machinery in the register action. This way, if the user hits
a protected page but isn't already a RailsSpace member, after registering he will automatically
be forwarded to place he was trying to go:
file: test/functional/user_controller_test.rb

def register

@title = "Register"

if request.post? and params[:user]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 194 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

@user = User.new(params[:user])

if @user.save

session[:user_id] = @user.id

flash[:notice] = "User #{@user.screen_name} created!"

if (redirect_url = session[:protected_page])

session[:protected_page] = nil

redirect_to redirect_url

else

redirect_to :action => "index"

end

end

end

end

Of course, the friendly forwarding code in register is identical to the code in login, which
we achieved by using the ability of our editor to copy text. This programming technique,
known as the cut-and-paste abstraction, is an egregious violation of the DRY principle. We'll
take care of this problem shortly (Section 6.6). But first, let's test our newly amiable forwarding
code.

6.5.4. Friendly Testing
The sequence for testing friendly forwarding seems very simple: get a protected page; make
sure we're forwarded to login; log in; make sure we're forwarded to the protected page:
file: test/functional/user_controller_test.rb

Test forward back to protected page after login.

def test_login_friendly_url_forwarding

Get a protected page.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 195 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

get :index

assert_response :redirect

assert_redirected_to :action => "login"

try_to_login @valid_user

assert_response :redirect

assert_redirected_to :action => "index"

Make sure the forwarding url has been cleared.

assert_nil session[:protected_page]

end

This gives

> ruby test/functional/user_controller_test.rb \

-n test_login_friendly_url_forwarding

Loaded suite test/functional/user_controller_test

Started

.

Finished in 0.112218 seconds.

1 tests, 5 assertions, 0 failures, 0 errors

The URL forwarding test for the register action is virtually identical to the one for the login
test:

Test forward back to protected page after register.

def test_register_friendly_url_forwarding

Get a protected page.

get :index

assert_response :redirect

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 196 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

assert_redirected_to :action => "login"

post :register, :user => { :screen_name => "new_screen_name",

:email => "valid@example.com",

:password => "long_enough_password" }

assert_response :redirect

This is a hack. See http://www.ruby-forum.com/topic/69760

assert_redirected_to :action => "index"

Make sure the forwarding url has been cleared.

assert_nil session[:protected_page]

end

Running this gives

> ruby test/functional/user_controller_test.rb \

-n test_register_friendly_url_forwarding

Loaded suite test/functional/user_controller_test

Started

.

Finished in 0.13922 seconds.

1 tests, 5 assertions, 0 failures, 0 errors

Though this second test works fine, it uses the cut-and-paste abstraction again—part of a
disturbing trend this entire chapter. It's time to fix this: it's time to roll up our sleeves and
refactor.

6.6. Refactoring Basic Login
During the process of writing the actions in the User controller, we've accumulated quite a
bit of cruft: we've exposed in several places our implementation of user login status, and
we've also cluttered both our actions and our tests with duplicated code. In this section, we'll

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 197 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

make our code beautiful again by refactoring it—that is, we'll change the appearance of the
code without altering what it does. If you haven't experienced the joys of refactoring, this
may seem pointless; after all, what could possibly matter other than the behavior of our
application? The answer, of course, is that the guts of the application might not matter to
our users, or to our computers, but they matter a lot to the programmers[13]. Well-organized,
beautiful code is easier to maintain and easier to extend, and it tends to have fewer bugs as
well.

[13] That would be us.

In many cases, refactoring involves eliminating duplication of code by capturing the patterns
in some abstraction (such as a new object or function), but that's not necessarily the case. In
refactoring the login function, we'll mainly be defining auxiliary functions, not to remove
duplication, but rather to allow us to write a shorter main function while moving code around
so that its location better reflects the logical structure of our application. In our case, this will
eliminate duplication, but improving the readability of the code is an end in itself.
Of course, refactoring can be dangerous business. How can we be confident that we're not
altering what our code does? How can we be sure that we're not introducing bugs? There's
no way to be sure, of course, but we do have one huge factor in our favor: by diligently writing
tests for our model, our controllers, and our views, we have accumulated a comprehensive
suite of tests. Tests let you refactor mercilessly; as long as the new code passes our test suite,
we can be confident that its essential behavior is unchanged.

6.6.1. Logged In?
One theme of good programming practice, for which refactoring is especially useful, is
building abstraction layers. This technique involves erecting barriers between different parts
of the system in order to hide irrelevant details and allow the programmer to deal with higher-
level constructs. We've already seen several examples of this design principle in Rails, most
prominently in Active Record, which is an abstraction layer for SQL databases.
In our present case, we have unnecessarily exposed the implementation details of user login
status in several places. In particular, when checking to see if the user is logged in, we have
been using the session variable explicitly. What we really want to ask, though, is whether the
user is logged in, which has nothing necessarily do with the session.
Let's build a (very small) abstraction layer by defining a function called logged_in? the test
to see if the user id session variable is nil. The only question is, where should we put it? If
we put logged_in? in the User controller, we can use it in the protect function, but we
won't be able to use it in the layout. If we put it in the Application helper file app/helpers/
application_helper.rb (the same place we put nav_link in Section 4.4.1), we can
use it in the layout, but not in the controller.
The tension here is a product of the MVC achitecture that Rails uses: we can nicely partition
our application into distinct pieces, but what if we need a function (such as logged_in?)
in more than one place? The solution is to pick one place to put the function and then
include it into the other parts of the application that need it.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 198 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The Ruby way to make a function available to multiple classes is to define that function in a
module and then include the module into any classes that need it, producing a so-called
mixin (because the functions in the module are mixed into the class). If you look at app/
helpers/application_helper.rb, you'll see that it defines the
ApplicationHelper module, whereas the User controller defines a class, not a module.
What this means is that if we put our utility function in the Application helper, we can mix it
into our User controller, thereby having it in both places. So, first we define the function as
follows:
file: app/helpers/application_helper.rb

Return true if some user is logged in, false otherwise.

def logged_in?

not session[:user_id].nil?

end

Then we mix it in:
file: app/controllers/user_controller.rb

class UserController < ApplicationController

include ApplicationHelper

.

.

.

end

Note that, in contrast to our previous use, the logged_in? function explicitly tests if
session[:user_id] is nil by calling the nil? function. If we had followed our previous
practice, we would have left the comparison implicit, and written
file: app/helpers/application_helper.rb

def logged_in?

session[:user_id]

end

As long as we always used logged_in? in the boolean context, this code would work fine,
but it's downright confusing—providing further evidence that explicitly testing for nil is a
good idea.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 199 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

As mentioned above, there are several places where we can use our new logged_in?
function. The most obvious use is in our protection filter, protect:
file: app/controllers/user_controller.rb

def protect

unless session[:user_id]

session[:protected_page] = request.request_uri

flash[:notice] = "Please log in first"

redirect_to :action => "login"

return false

end

end

becomes
file: app/controllers/user_controller.rb

def protect

unless logged_in?

session[:protected_page] = request.request_uri

flash[:notice] = "Please log in first"

redirect_to :action => "login"

return false

end

end

The navigation in our layout is another place:
file: app/views/layouts/application.rhtml

<% if session[:user_id] -%>

<%= nav_link "Hub", "user", "index" %> |

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 200 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<%= nav_link "Logout", "user", "logout" %>

<% else -%>

<%= nav_link "Register", "user", "register" %> |

<%= nav_link "Login", "user", "login" %>

<% end -%>

becomes
file: app/views/layouts/application.rhtml

<% if logged_in? -%>

<%= nav_link "Hub", "user", "index" %> |

<%= nav_link "Logout", "user", "logout" %>

<% else -%>

<%= nav_link "Register", "user", "register" %> |

<%= nav_link "Login", "user", "login" %>

<% end -%>

Finally, we can even use logged_in? in our tests, as long as we include
ApplicationHelper at the beginning of the test class:
file: test/functional/user_controllor_test.rb

class UserControllerTest < Test::Unit::TestCase

include ApplicationHelper

fixtures :users

.

.

.

Test a valid registration.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 201 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

def test_registration_success

post :register, :user => { :screen_name => "new_screen_name",

:email => "valid@example.com",

:password => "long_enough_password" }

Test assignment of user.

user = assigns(:user)

.

.

.

Make sure user is logged in properly.

assert logged_in?

assert_equal user.id, session[:user_id]

end

.

.

.

Test a valid login.

def test_login_success

 try_to_login @valid_user
 assert logged_in?
 assert_equal @valid_user.id, session[:user_id]
 assert_equal "User #{@valid_user.screen_name} logged in!", flash[:notice]
 assert_response :redirect

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 202 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 assert_redirected_to :action => "index"
end

.

.

.

Test the logout function.
def test_logout
 try_to_login @valid_user
 assert logged_in?
 get :logout
 assert_response :redirect
 assert_redirected_to :action => "index", :controller => "site"
 assert_equal "Logged out", flash[:notice]
 assert !logged_in?
end

Note that, as in Section 5.6.1, we use the negation operator !, in this case to assert that the
user is not logged in (assert !logged_in?); using the not keyword instead would
require a profusion of parentheses: assert((not logged_in?)).

6.6.2. Log In!
There's a second place where we've exposed the session machinery behind login status,
namely, in the login action:
file: app/controllers/user_controller.rb

def login

.

.

.

if user

session[:user_id] = user.id

Our current login action reduces our flexibility if we decide to change something about the
way we implement user login. In addition, as it stands our code requires the reader to infer
that session[:user_id] will be used to determine login status.
We really want the code to tell the reader what it does, namely, log the user in:
file: app/controllers/user_controller.rb

def login

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 203 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

.

if user

user.login!(session)

Note that we've ended our new user login method with an exclamation point (see box).
To get this code to work, we need to implement login! in the User model:
file: app/models/user.rb

Log a user in.

def login!(session)

session[:user_id] = self.id

end

Though we've encountered it before briefly in migrations, this is the first time we've written
our own code using the self keyword. Inside of a class, all of the class attributes are available
using self; that is, instead of writing user.id, inside the User class we write self.id
instead. In fact, we can go one better; when accessing a class attribute inside of the class you
can even omit self:
file: app/models/user.rb

Log a user in.

def login!(session)

session[:user_id] = id

end

Notice that we've simply passed the session as an argument to our login! method. Even
though the session is a fairly complicated object, implemented using either a file system or
a database (if you followed our suggestion in Section 6.1.1), Rails allows us to treat it just like
a hash, which includes the ability to pass it as a parameter to a function[14].

[14] In other words, session is an abstraction layer for the underlying session mechanism (whatever it may be).

There are two actions that log the user in—register and login—so we should update
both of them to use the new login! method:
file: app/controllers/user_controller.rb

class UserController < ApplicationController

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 204 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

.

.

def register

@title = "Register"

if request.post? and params[:user]

@user = User.new(params[:user])

if @user.save

@user.login!(session)

flash[:notice] = "User #{@user.screen_name} created!"

if (redirect_url = session[:protected_page])

session[:protected_page] = nil

redirect_to redirect_url

else

redirect_to :action => "index"

end

end

end

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 205 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

def login

@title = "Log in to RailsSpace"

if request.post? and params[:user]

@user = User.new(params[:user])

user = User.find_by_screen_name_and_password(@user.screen_name,

@user.password)

if user

user.login!(session)

flash[:notice] = "User #{user.screen_name} logged in!"

if (redirect_url = session[:protected_page])

session[:protected_page] = nil

redirect_to redirect_url

else

redirect_to :action => "index"

 end
 else
 # Don't show the password again in the view.
 @user.password = nil
 flash[:notice] = "Invalid screen name/password combination"
 end
 end
 end
 .
 .
 .
end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 206 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

6.6.3. Log Out!
Since we've hidden the login machinery behind the login! function, it makes sense to have
a complementary logout! function as well. Unfortunately, while the user login function
can be attached to a user object, we can't easily do the same for the logout! function. When
the user clicks the Logout button, we really aren't doing anything to the user; instead, we are
breaking the association between the current browser session and the user. In our original
logout action, we acted directly on the session, setting the session's user_id to nil. But
if we wanted to create the login! function as a normal (instance) method, we would first
have to create a user object, which would then call the login! function. That seems a bit
wasteful; fortunately, we have another option. We can create a class function—a function
that is attached to the entire class, not just to specific instances of the class. We have already
used some class fuctions, including User.new and
User.find_by_screen_name_and_password; now we'll create one of our own:
file: app/models/user.rb

Log a user out.

def self.logout!(session)

session[:user_id] = nil

end

Note that we define a class function with the self keyword. Just as self.id is the user id
in the context of a user method but would typically be written user.id elsewhere,
self.logout! is used inside the User class to define a method which is written as
User.logout! outside of the class. (We can't omit self in this case because that's the
notation for a normal method attached to user objects.)
The purpose of this new method is to use it in our logout action:
file: app/controllers/user_controller.rb

def logout

User.logout!(session)

flash[:notice] = "Logged out"

redirect_to :action => "index", :controller => "site"

end

This makes it clear to the reader that the method logs the user out, without the ugliness of
creating a superfluous user instance.
Is creating a User.logout! method for just one line of code a bit of overkill? Perhaps. But
then, practical experience shows that improving readability is useful by itself; moreover,

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 207 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

having a separate method just to perform the user logout (as opposed to filling the flash and
performing the redirect) puts that one line of code in a useful context, and introduces a nice
symmetry with the login! method. Finally, making abstraction layers is a good habit of
mind to cultivate; a useful rule of thumb is: when in doubt, build an abstraction layer. (We
will in fact see our User.logout! pay off a bit in Section 7.2.3.)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 208 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

If yes? then change!

By now we've seen many examples of how boolean functions in Ruby usually end
with question marks. Ruby follows a second useful punctuation convention:
functions that change the state of the variable—an operation called mutation—
typically end in an exclamation point. Among other things, mutation can result
in all sorts of subtle bugs, so Ruby considers it good form to warn the reader when
it occurs.
We've chosen to call our user login function login! to indicate that something
(in this case, the session) is being mutated. A second example appears in the
logout! function in Section 6.6.3. (These examples aren't as "pure" as most native
Ruby examples; for example, user.login! mutates the session, not the user.
But that's the nature of web programming—because HTTP is a stateless protocol,
we have to maintain some sort of information about the user outside of the User
model.)
A simple irb example should make clear the distinction between mutating and
non-mutating actions. If a is an array, a.reverse returns the reversed array but
leaves a alone, while a.reverse! mutates a by reversing it in place:

irb(main):001:0> a = [1, 2, 3, 4, 5]

=> [1, 2, 3, 4, 5]

irb(main):002:0> a.reverse

=> [5, 4, 3, 2, 1]

irb(main):003:0> a

=> [1, 2, 3, 4, 5]

irb(main):004:0> a.reverse!

=> [5, 4, 3, 2, 1]

irb(main):005:0> a

=> [5, 4, 3, 2, 1]

N.B. As far as we can tell, Ruby borrowed both the boolean? and mutation!
conventions from Scheme, a dialect of Lisp invented by Guy Steele and Gerry
Sussman[15].

[15] For a challenging introduction to computer programming using Scheme, we warmly recommend Structure and Interpretation of Computer Programs by Abelson and
Sussman (known as SICP ("sick-pee") to the cognoscenti). The entire text of SICP is available online through http://mitpress.mit.edu/sicp/, but you may find that investing
in a hard copy is worthwhile nevertheless.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 209 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://mitpress.mit.edu/sicp/

6.6.4. Clear Password!
There's another one-line function we can use to improve the readability of one of our actions,
in this case login:
file: app/controllers/user_controller.rb

def login

.

.

.

else

Don't show the password again in the view.

@user.password = nil

flash[:notice] = "Invalid screen name/password combination"

end

end

end

The line

@user.password = nil

doesn't describe what it does, namely, clear the password so it won't be shown again in the
view. In fact, its meaning is obscure enough that we felt compelled to write a clarifying
comment. We believe in writing self-documenting code whenever possible, which means
defining functions to describe what a block of code is doing (even if it's only one line);
oftentimes, apart from documentation comments (Section 4.4.1), we find that explanatory
comments are a sign of a missing function. In this spirit, let's define a function called
clear_password! in the User model:
file: app/models/user.rb

Clear the password (typically to suppress its display in a view).

def clear_password!

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 210 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

self.password = nil

end

Since this function mutates a user, we've chosen to end the function name with an
exclamation point.
There is an important subtlety in this function as well: notice that we've left the self keyword
in front of password. This is because Ruby lets us define local variables that override the
class attributes; the line

password = nil

would create a local variable called password with value nil. In order to assign to a user
object's attribute, we have to keep the self keyword.
With our new function in hand, our login function appears as follows:
file: app/controllers/user_controller.rb

def login

@title = "Log in to RailsSpace"

if request.post? and params[:user]

@user = User.new(params[:user])

user = User.find_by_screen_name_and_password(@user.screen_name,

@user.password)

if user

user.login!(session)

flash[:notice] = "User #{user.screen_name} logged in!"

if (redirect_url = session[:protected_page])

session[:protected_page] = nil

redirect_to redirect_url

else

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 211 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

redirect_to :action => "index"

end

else

@user.clear_password!

flash[:notice] = "Invalid screen name/password combination"

end

end

end

Let's take this opportunity to incorporate our newly paranoid attitude toward passwords by
clearing the password in the register action in the same way that we do in login:

def register

@title = "Register"

if request.post? and params[:user]

@user = User.new(params[:user])

if @user.save

@user.login!(session)

flash[:notice] = "User #{@user.screen_name} created!"

if (redirect_url = session[:protected_page])

session[:protected_page] = nil

redirect_to redirect_url

else

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 212 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

redirect_to :action => "index"

end

else

@user.clear_password!

end

end

end

If you run the tests we did this point, you'll realize that this change necessitates a
corresponding change in the registration failure test; where before we had :value =>
"sun", we now use :value => nil[16]:

[16] In this context, using :value => "" also works, but using the empty string doesn't work if the input tag is missing the value attribute altogether. In contrast, :value
=> nil works in both cases.

file: test/functional/user_controller_test.rb
Test an invalid registration

def test_registration_failure

post :register, :user => { :screen_name => "aa/noyes",

:email => "anoyes@example,com",

:password => "sun" }

.

.

.

assert_tag "input",

:attributes => { :name => "user[password]",

:value => nil },

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 213 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

:parent => error_div

end

6.6.5. Unduplicated Form Handling
So far, our refactoring has focused on improving the readability and logical structure of our
application. Now we come to the second major purpose of refactoring, the elimination of
code duplication. You may have noticed that both the logging and register actions use the
same code to test for a valid form submission:

if request.post? and params[:user]

We expect that this kind of test will be common on RailsSpace, so it makes sense to eliminate
this duplication and capture the common pattern in a function, which we'll call
param_posted? and put in the User controller:
file: app/controllers/user_controller.rb

private

.

.

.

Return true if a parameter corresponding to the given symbol was posted.

def param_posted?(symbol)

request.post? and params[symbol]

end

Note that we've designed param_posted? to take a symbol as an argument so that it can
be used for more than just the :user symbol. Note also that we didn't have to pass
params as an argument, since it's a global variable inside of any controller.
With this new function in hand, both the login and register actions are cleaned up nicely:
file: app/controllers/user_controller.rb

def register

@title = "Register"

if param_posted?(:user)

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 214 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

.

end

end

def login

@title = "Log in to RailsSpace"

if param_posted?(:user)

.

.

.

end

end

6.6.6. Unduplicated Friendly Forwarding
The last bit of refactoring is to capture the friendly forwarding machinery from Section 6.5
in a function:
file: app/controllers/user_controller.rb

private

.

.

.

Redirect to the previously requested URL (if present).

def redirect_to_forwarding_url

if (redirect_url = session[:protected_page])

session[:protected_page] = nil

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 215 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

redirect_to redirect_url

else

redirect_to :action => "index"

end

end

Then we simply use the function in both actions where it's needed:
file: app/controllers/user_controller.rb

def register

@title = "Register"

if param_posted?(:user)

@user = User.new(params[:user])

if @user.save

@user.login!(session)

flash[:notice] = "User #{@user.screen_name} created!"

redirect_to_forwarding_url

else

@user.clear_password!

end

end

end

def login

@title = "Log in to RailsSpace"

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 216 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

if param_posted?(:user)

@user = User.new(params[:user])

user = User.find_by_screen_name_and_password(@user.screen_name,

@user.password)

if user

user.login!(session)

flash[:notice] = "User #{user.screen_name} logged in!"

redirect_to_forwarding_url

else

@user.clear_password!

flash[:notice] = "Invalid screen name/password combination"

end

end

end

Finally, we can remove the side-effects of the cut-and-paste abstraction in our tests by
defining an auxiliary function for testing friendly URL forwarding, and then use it in each of
the relevant tests:
file: test/functional/user_controller_test.rb

Test forward back to protected page after login.

def test_login_friendly_url_forwarding

user = { :screen_name => @valid_user.screen_name,

:password => @valid_user.password }

friendly_url_forwarding_aux(:login, :index, user)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 217 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

Test forward back to protected page after register.
def test_register_friendly_url_forwarding
 user = { :screen_name => "new_screen_name",
 :email => "valid@example.com",
 :password => "long_enough_password" }
 friendly_url_forwarding_aux(:register, :index, user)
end

private
.
.
.

def friendly_url_forwarding_aux(test_page, protected_page, user)
 # Get a protected page.
 get protected_page
 assert_response :redirect
 assert_redirected_to :action => "login"
 post test_page, :user => user
 assert_response :redirect
 # This is a hack. See http://www.ruby-forum.com/topic/69760
 assert_redirected_to :action => protected_page
 # Make sure the forwarding url has been cleared.
 assert_nil session[:protected_page]
end

6.6.7. Sanity Check
Phew! With all that refactoring, let's run our tests to show that everything still works:

> rake

.

.

.

12 tests, 53 assertions, 0 failures, 0 errors

.

.

.

17 tests, 78 assertions, 0 failures, 0 errors

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 218 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

7. Advanced login

Although the basic login functions in Chapter 6 are probably already good enough for
government work, there's one feature we'd like to add that turns out to be both challenging
and instructive: a "remember me" box which, when checked, allows RailsSpace to remember
the login status of its users. Like basic login, this involves using the session to maintain user
state, but it also requires using browser cookies and the methods Rails has for manipulating
them. Cookies represent a more permanent way of maintaining state than the session,
allowing us to remember users even after they've closed their browsers.
Implementing the remember me feature is surprisingly complicated, producing rather
bloated and ugly code. Before tackling this code bloat, we'll dig even deeper into Rails tests,
including extensive testing of our cookie functions and our first example of integration
testing (mentioned briefly in Chapter 5). Once our test suite is complete, we'll refactor the
authentication functions with a vengeance, producing a surprisingly compact and elegant
login action.

7.1. So you Say you Want to be Remembered?
As the login code stands now, as of the end of Chapter 6, users are automatically logged out
if they close their browsers since the Rails session gets lost in that case. It's a bit inconvenient
to have to log in to a site every time you relaunch your browser, though, so let's create a way
for users to avoid logging in. To do this, we'll need a way of maintaining user state that goes
beyond a disk- (or database-) based session; we'll need to use a cookie, which is a small piece
of text placed on the user's computer that can persist even if the user shuts down his browser
[1].

[1] Rails actually maintains its sessions using a cookie, but that cookie expires automatically upon closing the browser. Making that cookie more permanent would not only
involve mucking around with the Rails internals, it would also present a security risk if the user happened to visit RailsSpace from a public computer.

7.1.1. A Remember Me Box
We're sure our readers have seen a "remember me" checkbox on the login page of many
sites. Unless you have a really good reason to violate them, it's best to conform to web
conventions, so we'll implement the remember me feature using a checkbox as well. Let's
add the following code to login.rhtml after the password field, resulting in a login page
as shown in Fig. 7.1:
file: app/views/user/login.rhtml

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 219 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

.

.

<div class="form_row">

<label for="password">Password:</label>

<%= form.password_field :password,

:size => User::PASSWORD_SIZE,

:maxlength => User::PASSWORD_MAX_LENGTH %>

</div>

<div class="form_row">

<label for="remember_me">Remember Me?:</label>

<%= form.check_box :remember_me %>

</div>

<div class="form_row">

<%= submit_tag "Login!", :class => "submit" %>

</div>

.

.

.

Figure 7.1. The "Remember Me?" checkbox.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 220 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyYmVtYmNwa2VzZWg3X2MvX21lcm1oX29fZXJjeDFpXy5hcGp0Z2w-

Before submitting this form, let's take a look at where we ended in Chapter 6:
file: app/controllers/user_controller.rb

def login

@title = "Log in to RailsSpace"

if param_posted?(:user)

@user = User.new(params[:user])

user = User.find_by_screen_name_and_password(@user.screen_name,

@user.password)

if user

user.login!(session)

flash[:notice] = "User #{user.screen_name} logged in!"

redirect_to_forwarding_url

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 221 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

else

 @user.clear_password!
 flash[:notice] = "Invalid screen name/password combination"
 end
 end
end

There's nothing suspicious-looking in this code, so let's enter Foo Bar's screen name
(foobar) and password (bazquux) and click submit.
Alas, the page breaks (Fig. 7.2). For a hint about why, take another look at login.rhtml.
There are fields corresponding to two attributes of a user: the screen name and password.
On submission, these fields get passed to the controller via params under the key :user,
which we turn into a user instance variable using the line

@user = User.new(params[:user])

Figure 7.2. The error Rails displays when trying to log in foobar.

[View full size image]

The problem is that, with the added remember_me field, params also contains a reference
to :remember_me, so User.new gamely tries to create an @user.remember_me attribute
—which doesn't, in fact, exist.
Let's open a console session to see just what went wrong.

> ruby script/console

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 222 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFybl9lZWJwbWVzcmg3X2MvX29rYm1lZV9tcnJfYTJpbHB0amcu

>> @user = User.new(:screen_name => "foobar", :password => "bazquux")

=> #<User:0xb7638438 @attributes={"screen_name"=>"foobar",

"password"=>"bazquux", "email"=>""}, @new_record=true>

>> @user = User.new(:screen_name => "foobar", :password => "bazquux",

?> :remember_me => "1")

NoMethodError: undefined method 'remember_me=' for #<User:0xb76877e0>

So, if we pass in a hash with just a screen name and password, the user works fine, but if we'd
give it a remember me key-value pair as well, we get a NoMethodError exception. Somehow,
we have to add a method that responds to a call like

@user.remember_me.

7.1.2. A Remember Me Attribute
We could fix the problem of the missing user remember_me attribute by adding a column
to the User model using a migration. That would cause Active Record to create a
remember_me attribute in just the same way it created the screen_name and
password attributes. There's absolutely no reason to do this, though, since there are only
two uses for the remember_me parameter: 1. provide the value for a remember_me cookie
on the user's browser and 2. create an @user instance variable for use in the login action
and view[2].

[2] Just as @user.screen_name determines the text appearing in the screen name text box, the value of @user.remember_me determines whether or not the check
box is checked.

What we need is a method of telling Ruby to create a remember_me attribute in the User
class without introducing a new column name in the database. Unsurprisingly, Ruby provides
a convenient construct to do exactly this, called attr_accessor ("attribute accessor"):
file: app/models/user.rb

class User < ActiveRecord::Base

attr_accessor :remember_me

.

.

.

end

Let's take a look at the console again and see if we've made an improvement:

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 223 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

>> reload!

>> @user = User.new(:screen_name => "foobar", :password => "bazquux",

?> :remember_me => "1")

=> #<User:0xb76115e0 @attributes={"screen_name"=>"foobar",

"password"=>"bazquux", "email"=>""}, @new_record=true, @remember_me="1">

>> @user.remember_me

=> "1"

Now our user has no trouble handling a remember me attribute.
We can get an even better hint about what's going on by looking at the result

=> #<User:0xb76115e0 @attributes={"screen_name"=>"foobar",

"password"=>"bazquux", "email"=>""}, @new_record=true, @remember_me="1">

Note that the user instance has an @attributes variable containing the user attributes
from the columns in our User model, while remember me has its own instance variable
@remember_me[3]. Through the magic of Active Record, we can access the elements of
@attributes and normal class attributes like remember_me using the same uniform dot
syntax.

[3] In fact, inside of the User class, the remember me attribute is an instance variable, available in any of the functions in the class in much the same way that controller
instance variables are available in the views. Creating an instance variable using attr_accessor :remember_me exposes it to the user, granting both read and write
access on remember_me.

7.1.3. The Remember Me Cookie[4]

[4] Mmm...cookie.

We're now at the point where submitting the page won't cause it to break, but it still doesn't
do anything. What we need to do is set a cookie indicating that the user wants to be
remembered if he checks the box. By reading the Rails API—or, more conveniently, by
submitting the login page and looking at the debug information—we can figure out that
the check_box function uses the string "0" for "unchecked" (Fig. 7.3) and "1" for
"checked" (Fig. 7.4).

Figure 7.3. Debug information shown when blank form is submitted with checkbox unchecked.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 224 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyZV9pdF9wbHVzb2g3X2MvX29rY2IwZS5nX2RhajNpcGc-

Figure 7.4. Debug information shown when blank form is submitted with checkbox checked.

[View full size image]

Now, @user = User.new(params[:user]) takes all of the user attributes from the
request and sets them as attributes of the instance variable @user. This means that we can
just check the remember_me attribute of @user to find out if the box is checked:

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 225 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyZV9pdF9wbHVzb2g3X2MvX29rY2IxZS5nX2RhajRpcGc-

file: app/controllers/user_controller.rb
def login

@title = "Log in to RailsSpace"

if param_posted?(:user)

@user = User.new(params[:user])

user = User.find_by_screen_name_and_password(@user.screen_name,

@user.password)

if user

user.login!(session)

if @user.remember_me == "1"

The box is checked, so set the remember_me cookie.

end

.

.

.

Now we come to the matter of setting the cookie. Rails provides a hash-like cookies variable
(similar to the session variable) for storing and retrieving values from the browser's cookies.
(Each cookie is simply a key/value pair stored as text on the browser, so they map naturally
to hashes.) To set a cookie, we simply assign a value for a particular key; for example, to set
the remember me cookie to "1", we could use this:
file: app/controllers/user_controller.rb

if @user.remember_me == "1"

cookies[:remember_me] = "1"

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 226 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

(Before being sent to the browser, the symbol :remember_me is converted to the string
"rember_me".)
This would appear to work at first, but cookies set in this manner have the default behavior
for cookies: they disappear after the browser is closed—hardly the behavior we want for the
remember me cookie! Alternatively, you can pass cookies a hash, giving the cookie both
a value and an expiration:
file: app/controllers/user_controller.rb

if @user.remember_me == "1"

cookies[:remember_me] = { :value => "1",

:expires => 10.years.from_now }

end

This code will set a cookie with value "1" that expires ten years from now (a time chosen
simply to be "a long time"). The expiration code—which might look quite mysterious—is an
example of the remarkable ability of Ruby to add methods onto virtually anything, even
numbers (see box).

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 227 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1.language.to_rule_them_all

Ruby grants a lot of power to its users, and, in a frantic act of desperation to gain
market share, actually trusts them to be sensible about using it. There is perhaps
no better example of this than Ruby's policy of allowing programmers to add
methods to any Ruby class, even built-in ones such as Fixnum[5]:

> irb

irb(main):001:0> class Fixnum

irb(main):002:1> def foo

irb(main):003:2> "bar"

irb(main):004:2> end

irb(main):005:1> end

=> nil

irb(main):006:0> 2.foo

=> "bar"

You can even, if you're drunk enough, override a default method, such as
exponentiation (**):

> irb

irb(main):001:0> 2**3

=> 8

irb(main):002:0> class Fixnum

irb(main):003:1> def **(other)

irb(main):004:2> 0

irb(main):005:2> end

irb(main):006:1> end

=> nil

irb(main):007:0> 2**3

=> 0

Rails takes advantage of this freedom to add a bunch of extraordinary methods
to the Fixnum class. The most useful in the context of a typical application have

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 228 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

to do with time, as in the 10.years.from_now we used to set the remember
me cookie's expiration date. Here are a few more examples[6]:

ruby script/console

Loading development environment.

>> 2.seconds

=> 2

>> 2.minutes
=> 120
>> 2.days
=> 172800
>> 2.days.ago
=> Mon Aug 14 08:49:42 PDT 2006
>> 2.days.from_now
=> Fri Aug 18 08:49:55 PDT 2006
>> 2.months.from_now
=> Sun Oct 15 08:50:14 PDT 2006

Sweet!

[5] A fixnum is a particular machine's definition of a "small" integer. On a typical 32-bit machine, the biggest fixnum is 230 - 1, which is a little over a billion.

[6] Since these are Rails additions to Ruby, they won't work in irb.

With our cookie-setting code inserted, our login function appears as follows:
file: app/controllers/user_controller.rb

def login

@title = "Log in to RailsSpace"

if param_posted?(:user)

@user = User.new(params[:user])

user = User.find_by_screen_name_and_password(@user.screen_name,

@user.password)

if user

user.login!(session)

if @user.remember_me == "1"

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 229 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

cookies[:remember_me] = { :value => "1",

:expires => 10.years.from_now }

end

flash[:notice] = "User #{user.screen_name} logged in!"

redirect_to_forwarding_url

else

@user.clear_password!

flash[:notice] = "Invalid screen name/password combination"

end

end

end

We're almost done, but not quite: suppose that we log in as Foo Bar with the remember me
box checked, log out, and then revisit the login page. Conventional web usage dictates that
the checkbox should still be checked, but that's not what happens now. We can get the
behavior we want by setting the remember me attribute of a user instance variable for a GET
request, since that's the kind of request for a normal (unsubmitted) hit:
file: app/controllers/user_controller.rb

def login

@title = "Log in to RailsSpace"

if request.get?

@user = User.new(:remember_me => cookies[:remember_me] || "0")

elsif param_posted?(:user)

@user = User.new(params[:user])

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 230 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

.

.

end

(We should note briefly the use of the elsif keyword, which is Rubyspeak for else if.
Where the middle "e" went, we'll never know.)
To make sure that the user instance variable has the right value for its remember_me
attribute, we use the code snippet cookies[:remember_me] || "0". If that looks
confusing, a quick irb session should make things a bit clearer:

> irb

irb(main):001:0> "1" || "0"

=> "1"

irb(main):002:0> nil || "0"

=> "0"

The reason this works is that the || operator uses short-circuit evaluation: it returns the first
true value it encounters. In other words, if the value is "1", return it; if it's nil (i.e., if the
cookie hasn't been set or has been deleted[7]), return "0". We should note that using or in
place of || won't work because the two operators have different precedence (see box).

[7] When we add the code to forget the user at the end of Section 7.2, we plan to delete the remember me cookie.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 231 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

or or ||?

Like most modern computer languages, Ruby has a rich set of operators whose
order of execution depends on their relative precedence. For example, as in the
rules of arithmetic, in Ruby 2 + 3 * 4 is 14 instead of 24 because multiplication
(*) has a higher precedence than addition (+). (See http://phrogz.net/
ProgrammingRuby/language.html#table_18.4 for a complete operator
precedence table.)
The rules of precedence in Ruby are mostly obvious, but an important exception
concerns the "word" boolean operators not, or, and and, together with their
corresponding "symbolic" versions !, ||, and &&. They are the same except for
their precedence, and this is the source of a couple common gotchas.
In the case of assigning a hash value, as in the login action's User.new
(:remember_me => cookies[:remember_me] || "0"), the lower
precedence of or results in an error:

> irb

irb(main):001:0> foo = nil

=> nil

irb(main):002:0> bar = "not nil"

=> "not nil"

irb(main):003:0> h = { :baz => foo or bar }

SyntaxError: compile error

(irb):3: parse error, unexpected kOR, expecting '}'

h = { :baz => foo or bar }

^

from (irb):3

from :0

irb(main):004:0> h = { :baz => foo || bar }

=> {:baz=>"not nil"}

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 232 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://phrogz.net/ProgrammingRuby/language.html#table_18.4
http://phrogz.net/ProgrammingRuby/language.html#table_18.4

The error saves us in this case, but we can see an even more pernicious pitfall by
continuing the irb session and alternately using or and || in an assignment:

irb(main):005:0> baz = foo or bar

=> "not nil"

irb(main):006:0> baz

=> nil

irb(main):007:0> baz = foo || bar

=> "not nil"

irb(main):008:0> baz

=> "not nil"

Because or has a lower precedence than the assignment operator =, a
construction such as baz = foo or baralways assigns foo to baz, even when
foo is nil. In contrast, the symbolic version || has a higher precedence than
=, so baz = foo || bar assigns foo to bazunlessfoo is nil (or false), in
which case baz is assigned the value of bar.
Our practice is to use the word versions for readability in boolean tests, e.g.,

if one_thing or another

and reserve use of the symbolic versions for when they are necessary because of
their higher precedence.

With that last bit of cookie manipulation in place, our remember me checkbox feature is
complete: the box will be checked or not depending on the user's choice. There's only one
problem: at no point do we actually remember the user!

7.2. Actually Remembering the User
To remember the user, place a second cookie on his browser to identify him[8] on subsequent
visits. To this end, we'll create an authorization token—which can be any sequence of
characters that identifies the user uniquely—and then store it both in the database and on
the user's browser. Then we'll implement a function to check for an authorization cookie
when a user visits our site; if it matches the authorization cookie for a valid user, the user will
automatically be logged in.

[8] We welcome female members of RailsSpace, but we have to choose either him or her in order to avoid the ungrammatical them, and we've gone with the traditional
(male) choice. Also, we are realistic about our site's demographics.

In contrast to the remember me cookie, we want to associate the authorization token with
a particular user, so it should be part of the User model. Let's add a column to the users table:

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 233 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

> ruby script/generate migration AddAuthorizationToken

exists db/migrate

create db/migrate/004_add_authorization_token.rb

file: db/migrate/004_add_authorization_token.rb
class AddAuthorizationToken < ActiveRecord::Migration

def self.up

add_column :users, :authorization_token, :string

end

def self.down

 remove_column :users, :authorization_token
 end
end

As usual, we update the database using rake:

> rake db:migrate

(in /rails/rails_space)

== AddAuthorizationToken: migrating ==

-- add_column(:users, :authorization_token, :string)

-> 0.3528s

== AddAuthorizationToken: migrated (0.3531s) =================================

7.2.1. An Authorization Cookie
Now that we've created a place in the User model for an authorization token, it's time to set
the token and put it in a cookie for future retrieval. It's tempting to use the obvious unique
value for the user, namely, his id. Let's do that now for simplicity (but be sure to see Section
7.2.4 to find out why this is actually a terrible solution):
file: app/controllers/user_controller.rb

def login

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 234 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

.

if @user.remember_me == "1"

cookies[:remember_me] = { :value => "1",

:expires => 10.years.from_now }

user.authorization_token = user.id

user.save!

cookies[:authorization_token] = {

:value => user.authorization_token,

:expires => 10.years.from_now }

end

.

.

.

end

Note that we've used the save! function in place of save (see box). The difference between
the two is that save! results in an error (by raising an
ActiveRecord::RecordInvalid exception) if the save fails, rather than returning
nil as save does. Previously, in the context of saving an Active Record object back to the
database, we've always had some sort of test to make sure that the save actually worked (i.e.,
if @user.save...). We have elected to use save! when remembering the user because
we want to make sure that the function successfully updates the user object with a new
authorization token. If we were to use save instead, then any problems would cause a silent
failure—save would simply return nil, and that would have no effect whatsoever. We
would be none the wiser that our remember me functionality had failed. (Of course, a good
test suite would catch any consistent problem, but a transient failure on the production

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 235 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

machine would go undetected; moreover, assuming that we don't run our test suite every
few minutes, the immediate failure would alert us sooner rather than later.)

Another use!

We've mentioned the philosophy of using an exclamation point to indicate
mutation (Section 6.6.2). We've now seen a second, closely related use: if we have
a user object, we distinguish between two distinct kinds of saving by using either
user.save or user.save!.
Invoking user.savemight mutate the user object in the database, but it might
not; if it doesn't, it just returns nil, which we can include in an if clause to take
appropriate action depending on the outcome. We might call this case weak
mutation, since no mutation necessarily takes place. In contrast, user.save!
must successfully mutate the user object in the database, or else it raises an
exception. We can call this case strong mutation, since a failure to mutate is an
error. The exclamation point is a reminder that a mutation must occur.

As a last step in the remember me section of the login action, we should forget the user by
deleting the cookies if the remember me box is unchecked:
file: app/controllers/user_controller.rb

if @user.remember_me == "1"

cookies[:remember_me] = { :value => "1",

:expires => 10.years.from_now }

user.authorization_token = user.id

user.save!

cookies[:authorization_token] = {

 :value => user.authorization_token,

:expires => 10.years.from_now }

else

cookies.delete(:remember_me)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 236 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

cookies.delete(:authorization_token)

end

Here we use the cookies.delete function, which simply deletes the cookie
corresponding to the given symbol[9].

[9] In case you're not in the habit yet, this would be a good time to look up cookies in the Rails API.

7.2.2. Remembering that we Remembered
Now that we've placed a unique authorization cookie on the user's browser, all we need to
do is find that user when he returns to the site (in case he closed his browser in the interim).
The function to check for proper authorization should be run on every page on the site, since
every page is potentially affected by the user login status. The proper home for such a site-
wide function is in the Application controller,
file: application.rb (which we met briefly in when discussing the controller inheritance
hierarchy in Section 2.4.1). We'll define an authorization function to check for the cookie on
the browser, look for the corresponding user in the database, and log the user in if such a
user exists:
file: app/controllers/application.rb

Filters added to this controller will be run for all controllers in the application.

Likewise, all the methods added will be available for all controllers.

class ApplicationController < ActionController::Base

Pick a unique cookie name to distinguish our session data from others'

session :session_key => '_rails_space_session_id'

Check for a valid authorization cookie, possibly logging the user in.

def check_authorization

if cookies[:authorization_token] and not session[:user_id]

user = User.find_by_authorization_token(cookies[:authorization_token])

if user

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 237 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

session[:user_id] = user.id

end

end

 end
end

Since authorization_token is a column in the User model, you might already have
guessed that Rails automagically creates a find_by_authorization_token for us,
which we've used to good effect. Note also that, in case the authorization token is invalid for
some reason, we only log the user in if we find a user corresponding to that token.
The only necessary steps left is to run check_authorization before every action in every
controller on the entire site. We learned in Section 6.4.2 that we could run a function before
any action in the User controller by placing a before_filter in that controller (though in
that case it turned out we wanted to restrict the before filter to certain pages only). Since the
Application controller lies at the base of all our controller classes, all we need to do is set up
a before_filter inside the ApplicationController class to run it on every action
in RailsSpace:
file: app/controllers/application.rb

class ApplicationController < ActionController::Base

before_filter :check_authorization

Pick a unique cookie name to distinguish our session data from others'

session :session_key => '_rails_space_session_id'

Check for a valid authorization cookie, possibly logging the user in.

def check_authorization

if cookies[:authorization_token] and not session[:user_id]

user = User.find_by_authorization_token(cookies[:authorization_token])

if user

session[:user_id] = user.id

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 238 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

end

end

end

This check_authorization function will work fine, but it may leave you with a slightly
unclean feeling: what about all the nice utility functions we defined when refactoring the
login function in Section 6.6? It would be great to use them again here. We'll include the
ApplicationHelper module as in Section 6.6.1 to get the logged_in? function;
meanwhile, we get the login! function for free since it's a method on the user object. Finally,
we have one more piece of (minor) duplication—we access the authorization token cookie
twice, so let's create a local variable to hold its value. With these bits of polish,
check_authorization appears as follows[10]:

[10] Since UserController inherits from ApplicationController, you can now remove the line include ApplicationHelper from app/controllers/
user_controller.rb, though it does no harm if you leave it in.

file: app/controllers/application.rb
class ApplicationController < ActionController::Base

include ApplicationHelper

before_filter :check_authorization

Pick a unique cookie name to distinguish our session data from others'

session :session_key => '_rails_space_session_id'

def check_authorization

authorization_token = cookies[:authorization_token]

if authorization_token and not logged_in?

user = User.find_by_authorization_token(authorization_token)

user.login!(session) if user

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 239 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

end

end

And that's it!

7.2.3. Updating Logout
Unsurprisingly, since we're now storing authentication information in a cookie, we need to
delete that cookie when the user logs out. Let's put the relevant code in the logout!
function we defined when refactoring the logout action in Chapter 6:
file: app/models/user.rb

Log a user out.

def self.logout!(session, cookies)

session[:user_id] = nil

cookies.delete(:authorization_token)

end

Note that we haven't deleted the remember me cookie. This is just a convention, but it's one
that's common on the web: just because a user has logged out doesn't mean that he doesn't
want his screen name remembered the next time he logs in. This way, that remember me
box will still be checked the next time he visits the login page.
Because logging out now requires a cookie deletion, we've added the cookies as an argument
to logout!. That means we need to update the call to User.logout! in the User controller
by including cookies. It's incredibly easy to forget to update the argument list in this
manner; suppose that we did forget but were in the habit of running our test suite regularly:

> rake

.

.

.

Started

..........E.....

Finished in 0.545465 seconds.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 240 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1) Error:

test_logout(UserControllerTest):

ArgumentError: wrong number of arguments (1 for 2)

/rails/rails_space/config/../app/controllers/user_controller.rb:58:in 'logout!'

.

.

.

You can see how a test suite can really save you a lot of pain.
Now that we've caught the mistake, we'll correct it by adding cookies to
User.logout!:
file: app/controllers/user_controller.rb

def logout

User.logout!(session, cookies)

flash[:notice] = "Logged out"

redirect_to :action => "index", :controller => "site"

end

You should be sufficiently paranoid by now to run the test again, just to make sure:

> rake

(in /rails/rails_space)

/usr/local/bin/ruby -Ilib:test "/usr/local/lib/ruby/gems/1.8/gems/rake-
0.7.1/lib/rake/rake_test_loader.rb" "test/unit/user_test.rb"
Loaded suite /usr/local/lib/ruby/gems/1.8/gems/rake-0.7.1/lib/rake/rake_test_loader
Started
............
Finished in 0.352008 seconds.

12 tests, 51 assertions, 0 failures, 0 errors
/usr/local/bin/ruby -Ilib:test "/usr/local/lib/ruby/gems/1.8/gems/rake-
0.7.1/lib/rake/rake_test_loader.rb" "test/functional/site_controller_test.rb" "test/functional/user_
Loaded suite /usr/local/lib/ruby/gems/1.8/gems/rake-0.7.1/lib/rake/rake_test_loader
Started
.................
Finished in 0.599558 seconds.

17 tests, 86 assertions, 0 failures, 0 errors

Whew!

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 241 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

7.2.4. A More Secure Cookie
Using the user id as the authentication token works fine, but only in the sense that it will take
an enterprising black hat about 30 seconds[11] to figure out how to log in as virtually any user
on the site. The reason is that anyone who looks at his browser cookies will see that the
authorization token is just an integer. If a malicious cracker were user number 145, for
example, he would see 145 his browser cookies, and he could easily guess that setting the
cookie to 146 would let him log in as the user who registered immediately after him. He
would then go on to realize that he could compromise other accounts using virtually any
integer (up to the total number of RailsSpace users).

[11] Only 20 seconds if he also has a mustache.

To plug this terrible hole, we should use an authorization token that is both unique and hard
to guess. We'll use a standard approach to this problem and run a string identifying the user
through a secure hashing algorithm. A hashing algorithm converts some piece of data into
a kind of digital "fingerprint" (called a message digest) identifying that data. One common
use of hashing algorithms is, appropriately enough, in hash tables, which are essentially
arrays of values indexed by the corresponding key digests. Secure hash functions are
designed so that it's difficult to figure out anything about the data using just the digest.
At first glance, it seems that hashing the user's screen name will identify him uniquely. That's
true, but screen names are easy to guess, so anybody using the same hashing algorithm
could impersonate our user by hashing his username. Hashing just the password doesn't
work, either; although that piece of data is presumably harder to guess, two different users
could easily have the same password. But, taken together, the screen name and password
do constitute a unique string identifying the user—as long as they are separated by a
character that's not allowed in a screen name. Otherwise, there would be no way to tell the
difference between screen name foobar/password bazquux and screen name foobarb/
password azquux, since both would have the same combination foobarbazquux.) Any
invalid screen name character will do as a separator; we'll use a colon (:), yielding a
combination like foobar:bazquux. (For a slightly more involved solution to the same basic
problem, do a web search on salted hash.)
Ruby comes equipped with SHA1, a commonly used secure hashing algorithm, which we'll
use to make the authorization token. To see how it works, let's use the console[12]:

[12] Note that we're suppressing the display of the user object using the ; 0 trick from Section 5.6.3.

> ruby script/console

Loading development environment.

>> user = User.find_by_screen_name("foobar"); 0

=> 0

>> "#{user.screen_name}:#{user.password}"

=> "foobar:bazquux"

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 242 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

>> Digest::SHA1.hexdigest("#{user.screen_name}:#{user.password}")

=> "599d203b3ac93126851f5566c3bf059d07e47183"

That digest looks pretty hard to guess. The only way to generate it would be to know both
the screen name and password, but of course in that case you wouldn't have any trouble
logging in as the user anyway. (By the way, don't worry if the expression
Digest::SHA1.hexdigest looks intimidating or confusing; we stole this code from Dave
Thomas and used it long before we understood it[13]. Never let a little mysterious syntax get
in the way of stealing some good code.)

[13] Not that we understand it now.

To use SHA1 on RailsSpace, all we need to do is require it at the top of our User model (just
as we did in the console session):
file: app/controllers/user_controller.rb

require 'digest/sha1'

class UserController < ApplicationController

.

.

.

def login

.

.

.

if @user.remember_me == "1"

cookies[:remember_me] = { :value => "1",

:expires => 10.years.from_now }

user.authorization_token = Digest::SHA1.hexdigest(

"#{user.screen_name}:#{user.password}")

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 243 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

user.save!

cookies[:authorization_token] = {

:value => user.authorization_token,

:expires => 10.years.from_now }

else

cookies.delete(:remember_me)

cookies.delete(:authorization_token)

end

.

.

.

end

.

.

.

end

Now, upon logging in with the remember me box checked, the authorization_token
cookie will be placed on the user's browser, as shown in Fig. 7.5.

Figure 7.5. Viewing cookies on the Safari browser.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 244 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyaV9yYWVwX2tzYWg3X2MvX2Zhc29zb2xpX2MxdDVpLmpncA--

7.2.5. The Finished (?) Functions
With the cookie authorization feature added, our complete login function looks like this:
file: app/controllers/user_controller.rb

def login

@title = "Log in to RailsSpace"

if request.get?

@user = User.new(:remember_me => cookies[:remember_me] || "0")

elsif param_posted?(:user)

@user = User.new(params[:user])

user = User.find_by_screen_name_and_password(@user.screen_name,

@user.password)

if user

user.login!(session)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 245 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

if @user.remember_me == "1"

cookies[:remember_me] = { :value => "1",

:expires => 10.years.from_now }

user.authorization_token = Digest::SHA1.hexdigest(

"#{user.screen_name}:#{user.password}")

user.save!

cookies[:authorization_token] = {

:value => user.authorization_token,

:expires => 10.years.from_now }

else

cookies.delete(:remember_me)

cookies.delete(:authorization_token)

end

flash[:notice] = "User #{user.screen_name} logged in!"

redirect_to_forwarding_url

else

@user.clear_password!

flash[:notice] = "Invalid screen name/password combination"

end

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 246 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

We hope you agree that the login function has gotten rather unwieldy, and we're just itching
to refactor it. But don't forget the cardinal rule: first test, then refactor. Once we've updated
our test suite to verify the correctness of our remember me machinery, we'll refactor with
gusto.

7.3. Remember Me Tests
We've added quite a lot of functionality with the remember me feature, so there are several
tests to update and a couple of new tests to write. First, we'll update the login tests and add
a new one. Then we'll update the logout function. Finally, we'll test the
check_authorization filter to make sure that users who log out, close their browsers,
and return to the site are automatically logged back in. This final test will use the amazing
integration testing mentioned briefly in the introduction to this chapter. In the process of
writing all these tests, we'll discover several subtleties to Rails testing, including an important
cautionary tale.
By the way, if you want to run the tests as we go along, you will need to prepare the test
database, since we've added some migrations since our last test:

> rake db:test:prepare

(in /rails/rails_space)

7.3.1. Updated Login Tests
The first test update is test_login_page, just to make sure that the checkbox is actually
there:
file: test/functional/user_controller_test.rb

Make sure the login page works and has the right fields.

def test_login_page

.

.

.

assert_tag "input", :attributes => { :name => "user[remember_me]",

:type => "checkbox" }

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 247 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

assert_tag "input", :attributes => { :type => "submit",

:value => "Login!" }

end

That was easy; the first real challenge is the update to test_login_success. We'll use
this test to verify that the right things happen when the check box is unchecked. This means
posting a remember_me variable with value "0". We expect that the user's remember me
attribute won't be "1"[14], and we expect both the remember me and authorization cookies
to be nil:

[14] We could check to see if it's "0", but in the production code what we actually check is whether it's "1" or not, so we've decided to test that behavior directly.

file: test/functional/user_controller_test.rb
Test a valid login.

def test_login_success

try_to_login @valid_user, :remember_me => "0"

assert logged_in?

assert_equal @valid_user.id, session[:user_id]

assert_equal "User #{@valid_user.screen_name} logged in!", flash[:notice]

assert_response :redirect

assert_redirected_to :action => "index"

Verify that we're not remembering the user.

user = assigns(:user)

assert user.remember_me != "1"

There should be no cookies set.

assert_nil cookies[:remember_me]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 248 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

assert_nil cookies[:authorization_token]

end

.

.

.

private

Try to log a user in using the login action.

Pass :remember_me => "0" or :remember_me => "1" in options

to invoke the remember me machinery.

def try_to_login(user, options = {})

user_hash = { :screen_name => user.screen_name,

:password => user.password }

user_hash.merge!(options)

post :login, :user => user_hash

end

Note that we've updated the try_to_login function to take an options hash, which is
empty by default; if options is :remember_me => "0", then the user hash gains that
key/value pair via the merge! method, which combines the attributed of two hashes[15]. A
quick irb session shows how it works:

[15] See http://www.ruby-doc.org/core/classes/Hash.html.

> irb

irb(main):001:0> user_hash = { :screen_name => "foo", :password => "barbaz" }

=> {:screen_name=>"foo", :password=>"barbaz"}

irb(main):002:0> options = { :remember_me => "0" }

=> {:remember_me=>"0"}

irb(main):003:0> user_hash.merge!(options)

=> {:screen_name=>"foo", :password=>"barbaz", :remember_me=>"0"}

Apart from the updated try_to_login function, our test seems fairly straight-forward, but
unfortunately it doesn't work. Or rather, it works, but for the wrong reason: it turns out that,

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 249 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://www.ruby-doc.org/core/classes/Hash.html

inside of tests, Rails (as of version 1.1.6) always returns nil when cookies are accessed using
symbols (as you would have discovered to your consternation in the next test, when the
remember me box is checked, and we expect that the corresponding cookie is not nil).
Instead of using symbols, in tests you have to use strings as hash keys and extract the cookie
value explicitly; in other words, cookies["remember_me"].value, in the context of
tests, lets you access the value given by cookies[:remember_me] in a controller.
Unfortunately, it's still not quite the same thing: in a test, an empty cookie is not nil, but is
rather the empty array []. In addition, for a nonempty cookie, the value is returned inside of
an array; for example, when the remember me box is checked, the corresponding cookie
value cookies["remember_me"].value is ["1"] inside the test, rather than just "1".
What a pain in the neck[16].

[16] By the way, we figured all these things out by interrupting our tests using the raise object.inspect trick from Section 4.3—using, for example, raise cookies
["remember_me"].inspect to look at the remember me cookie.

Those are a lot of annoyances, and we expect that they will be fixed in future versions of Rails;
in the meantime, there are several ways around these problems. Our solution is to write a
couple of auxiliary functions to help us look at cookie values (and expirations, which we we'll
need in a test momentarily) using a more convenient notation:
file: test/functional/user_controller_test.rb

private

.

.

.

Return the cookie value given a symbol.

def cookie_value(symbol)

cookies[symbol.to_s].value.first

end

Return the cookie expiration given a symbol.

def cookie_expires(symbol)

cookies[symbol.to_s].expires

end

These functions use the to_s ("to string") method (which exists for all Ruby objects) and the
first method on arrays:

> irb

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 250 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

irb(main):001:0> :remember_me.to_s

=> "remember_me"

irb(main):002:0> ["1", "2"].first

=> "1"

irb(main):003:0> ["1"].first

=> "1"

irb(main):004:0> [].first

=> nil

With these utility functions on hand, we can rewrite our test as follows:
file: test/functional/user_controller_test.rb

Test a valid login.

def test_login_success

try_to_login @valid_user, :remember_me => "0"

assert logged_in?

assert_equal @valid_user.id, session[:user_id]

assert_equal "User #{@valid_user.screen_name} logged in!", flash[:notice]

assert_response :redirect

assert_redirected_to :action => "index"

Verify that we're not remembering the user.

user = assigns(:user)

assert user.remember_me != "1"

There should be no cookies set.

assert_nil cookie_value(:remember_me)

assert_nil cookie_value(:authorization_token)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 251 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

Let's run it to make sure it works:

> ruby test/functional/user_controller_test.rb -n test_login_success

Loaded suite test/functional/user_controller_test

Started

.

Finished in 0.160388 seconds.

1 tests, 8 assertions, 0 failures, 0 errors

The test of a checked remember me box now seems relatively straightforward:
file: tests/functional/user_controller_test.rb

def test_login_success_with_remember_me

try_to_login @valid_user, :remember_me => "1"

test_time = Time.now

assert logged_in?

assert_equal @valid_user.id, session[:user_id]

assert_equal "User #{@valid_user.screen_name} logged in!", flash[:notice]

assert_response :redirect

assert_redirected_to :action => "index"

Check cookies and expiration dates.

user = User.find(@valid_user.id)

Remember me cookie

assert_equal "1", cookie_value(:remember_me)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 252 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

assert_equal 10.years.from_now(test_time),

cookie_expires(:remember_me)

Authorization cookie

cookie_token = cookies["authorization_token"].value.to_s

assert_equal user.authorization_token, cookie_value(:authorization_token)

assert_equal 10.years.from_now(test_time),

cookie_expires(:authorization_token)

end

There are two subtleties in this test. First, the login function sets a cookie based on the
timestamp 10.years.from_now as calculated within the login function itself. There's no
simple way to get access to that timestamp, so we do the next best thing by recording the
time immediately after posting the login information. We then feed that test time to
10.years.from_now, which takes an optional timestamp to use as the start time for its
calculation[17].

[17] The default is just Time.now.

The second subtlety involves a difficulty in comparing timestamps, and in fact our test doesn't
work as currently written:

> ruby test/functional/user_controller_test.rb \

-n test_login_success_with_remember_me

Started

F

Finished in 0.424256 seconds.

1) Failure:

test_login_success_with_remember_me(UserControllerTest) [./test/functional/
user_controller_test.rb:145]:

<Thu Sep 08 08:33:23 PDT 2016> expected but was

<Thu Sep 08 08:33:23 PDT 2016>.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 253 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

That doesn't make any sense, since the two expirations appear to be identical. What's going
on is that internally Ruby stores timestamps as microseconds since the epoch (January 1,
1970 00:00 UTC), and the two timestamps we're comparing don't agree to the microsecond.
The solution is to use the Ruby assertion assert_in_delta, which asserts that the
difference between two floating point numbers is less than some error tolerance (delta). On
any modern computer, the time stamps should agree to within 100 microseconds, but any
disagreement much bigger than that indicates a problem, so the test should fail. Modifying
the cookie expiration assertions to use assert_in_delta completes our test:
file: tests/functional/user_controller_test.rb

Test a valid login with the remember box checked.

def test_login_success_with_remember_me

try_to_login @valid_user, :remember_me => "1"

test_time = Time.now

assert logged_in?

assert_equal @valid_user.id, session[:user_id]

assert_equal "User #{@valid_user.screen_name} logged in!", flash[:notice]

assert_response :redirect

assert_redirected_to :action => "index"

Check cookies and expiration dates.

user = User.find(@valid_user.id)

time_range = 100 # microseconds range for time agreement

Remember me cookie

assert_equal "1", cookie_value(:remember_me)

assert_in_delta 10.years.from_now(test_time),

cookie_expires(:remember_me),

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 254 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

time_range

Authorization cookie

assert_equal user.authorization_token, cookie_value(:authorization_token)

assert_in_delta 10.years.from_now(test_time),

cookie_expires(:authorization_token),

time_range

end

Finally, we have working tests for the remember me function:

> ruby test/functional/user_controller_test.rb -n /test_login_success/

Loaded suite test/functional/user_controller_test

Started

..

Finished in 0.282308 seconds.

2 tests, 17 assertions, 0 failures, 0 errors

7.3.2. Updated Logout Test
There's just one more function in the User controller to test: the logout function. We'll just
need to make sure that the authorization token cookie is deleted:
file: tests/functional/user_controller_test.rb

Test the logout function.

def test_logout

try_to_login @valid_user, :remember_me => "1"

assert logged_in?

assert_not_nil cookie_value(:authorization_token)

get :logout

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 255 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

assert_response :redirect

assert_redirected_to :action => "index", :controller => "site"

assert_equal "Logged out", flash[:notice]

assert !logged_in?

assert_nil cookie_value(:authorization_token)

end

We put in a lot of work in the section, but finally all the User controller tests should run fine:

> ruby test/functional/user_controller_test.rb

Loaded suite test/functional/user_controller_test

Started

.............

Finished in 0.93413 seconds.

14 tests, 81 assertions, 0 failures, 0 errors

Hallelujah!

7.4. Advanced Tests: Integration Testing
The last aspect of the remember me functionality that we have to test is remembering that
we remembered. Our plan will be to log in with the remember me box checked, then clear
the session (thereby simulating the user closing his browser), and finally visit some arbitrary
page of our site to verify that the user has automatically been logged in. This is quite a
complicated test, requiring multiple page views on more than one controller—just the
situation handled by integration testing, which essentially simulates a user clicking through
the pages on our site.

7.4.1. Testing Cookie Remembering: The First Cut
Since integration tests typically span more than one controller, they haven't been
automatically created by any of our previous generate commands, which have been
restricted to single controllers or models. Unsurprisingly, though, there is a way to generate
them; since we're testing our remember me machinery, let's create an integration test for
remember_me:

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 256 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

> ruby script/generate integration_test remember_me

exists test/integration

create test/integration/remember_me_test.rb

Note that the generate script automatically knows to create a test called
remember_me_test.rb based on the argument remember_me.
Let's take a look at our shiny new integration test:
file: test/integration/remember_me_test.rb

require "#{File.dirname(__FILE__)}/../test_helper"

class RememberMeTest < ActionController::IntegrationTest

fixtures :your, :models

Replace this with your real tests.

def test_truth

assert true

end

end

As with our previous tests, the default test is trivial; let's run it with the rake task specialized
for integration tests, rake test:integration:

> rake test:integration

(in /rails/rails_space)

.

Finished in 0.105 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

For the real test, we'll need to load a valid user, so let's include our users fixture with
fixtures :users, together with a setup function defining a user instance variable
@user. We'll also the include ApplicationHelper module so that we have access to our
login utility function logged_in?. With these changes, our remember me test looks like
this:
file: test/integration/remember_me_test.rb

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 257 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

require "#{File.dirname(__FILE__)}/../test_helper"

class RememberMeTest < ActionController::IntegrationTest

include ApplicationHelper

fixtures :users

def setup

@user = users(:valid_user)

end

Replace this with your real tests.

def test_truth

assert true

end

end

Now that those steps are done, let's write a test for the remember me feature:
file: test/integration/remember_me_test.rb

require "#{File.dirname(__FILE__)}/../test_helper"

class RememberMeTest < ActionController::IntegrationTest

include ApplicationHelper

fixtures :users

def setup

@user = users(:valid_user)

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 258 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

def test_remember_me

Log in with remember me enabled.

post "user/login", :user => { :screen_name => @user.screen_name,

:password => @user.password,

:remember_me => "1" }

Simulate "closing the browser" by clearing the user id from the session.

@request.session[:user_id] = nil

Now access an arbitrary page.

get "site/index"

The check_authorization before_filter should have logged us in.

assert logged_in?

assert_equal @user.id, session[:user_id]

end

end

We'll take this step by step. The initial login step should look familiar from the User controller
test test_login_with_remember_me, except for the argument to post. Before, we
supplied post with a symbol corresponding to the relevant action (i.e., post :login),
which was unambiguous because the test was specific to the User controller; the test knows
to use the User controller automatically. Since integration tests can access multiple
controllers, though, we need to post a string specifying both the action and the controller.
After logging in with remember me enabled, we simulate closing the browser with the line
[18]

[18] Recall from Section 6.3.2 that we must use @request.session when assigning to the session in a test.

@request.session[:user_id] = nil

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 259 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Once we've cleared the user id from the session, we hit an arbitrary page on the site using
get (which we choose to be the site index without loss of generality) and then make sure
that the before_filter logged the user in.
Run the test, and you'll see that it passes:

> rake test:integration

(in /rails/rails_space)

.

Finished in 0.185 seconds.

1 tests, 2 assertions, 0 failures, 0 errors

7.4.2. Testing the Test: A Cautionary Tale
The test in the previous section sure does look good, and it is. But beware: looks can be
deceiving. Consider, for example, this virtually identical test:
file: test/integration/remember_me_test.rb

def test_remember_me

Log in with remember me enabled.

post "user/login", :user => { :screen_name => @user.screen_name,

:password => @user.password,

:remember_me => "1" }

Simulate "closing the browser" by clearing the user id from the session.

session[:user_id] = nil

Now access an arbitrary page.

get "site/index"

The check_authorization before_filter should have logged us in.

assert logged_in?

assert_equal @user.id, session[:user_id]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 260 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

The only difference between this test and the previous one is the line

session[:user_id] = nil

instead of

@request.session[:user_id] = nil

Why is this such a big problem? As we saw starting in Section 6.2.2, in tests we can access the
session variable using session (without the @request), so that session[:user_id]
returns the correct value (1 in this case). Unfortunately, in integration tests you can seemingly
assign to it the same way. Unfortunately, such manipulations don't actually do anything,
even though the test appears to work[19]:

[19] Thankfully, a similar assignment to session in a functional test raises an error.

file: test/integration/remember_me_test.rb
def test_remember_me

Log in with remember me enabled.

post "user/login", :user => { :screen_name => @user.screen_name,

:password => @user.password,

:remember_me => "1" }

puts session[:user_id] # Prints "1", the string for @user.id.

session[:user_id] = 42 # some bogus value

puts session[:user_id] # Prints "42".

Now access an arbitrary page.

get "site/index"

The session has reverted to its previous value!

puts session[:user_id] # Prints "1"!

The check_authorization before_filter should have logged us in.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 261 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

assert logged_in?

assert_equal @user.id, session[:user_id]

end

We discovered this problem accidentally. We forgot to use @request.session, using plain
session instead; meanwhile, it turned out there was actually a typo in our
check_authorization function: we had written log_in! (with an underscore) instead
of login!:
file: app/controllers/application.rb

class ApplicationController < ActionController::Base

include ApplicationHelper

before_filter :check_authorization

Log a user in by authorization cookie if necessary.

def check_authorization

authorization_token = cookies[:authorization_token]

if authorization_token and not logged_in?

user = User.find_by_authorization_token(authorization_token)

user.log_in!(session) if user

end

end

end

Despite (apparently) giving the user id in the session a completely bogus value, while
simultaneously having a broken authorization check, this test passes easily. The problem is
that the assignment to the session variable is a fraud: there is, in fact, a global variable called
session, but assigning to it in integration test doesn't actually change that variable; instead,
it creates a new local variable, also called session—which promptly gets overwritten (and
restored back to the global session variable) when we get a new page.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 262 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The solution is simple: in tests, always use @request.session when accessing or assigning
to the session variable.

7.4.3. Some Reflections on Rails Testing
It should be clear from all our remember me testing that the Rails testing facilities have several
pitfalls waiting to trap the unwary. In particular, we've seen that the handling of cookies in
functional tests is distinctly sub-optimal, and there's a big gotcha associated with using the
session in integration tests. It's a good idea when using the less mature aspects of Rails testing
to "test the tests" by occasionally breaking parts of the site by hand (with typos, for example)
just to make sure that the relevant tests fail.
Despite these issues, it's important that the larger points don't get lost. First, the vast majority
of Rails testing facilities are rock solid. The things that broke (cookie symbol access,
integration testing session assignment) are on the bleeding edge of testing, and aren't even
attempted by most other frameworks. Rails testing is clearly pushing the envelope, so it's
hard to fault it for having a few rough edges. In addition, Rails continues to evolve and
improve rapidly, and we expect that as it matures further its testing facilities will rapidly
converge on perfect. Finally, we were able to hack around the problems. Rails and Ruby give
us enough power to overcome even enormous obstacles.

7.5. Refactoring Redux
When last we left the login action, it had become bloated and ugly—nothing like the svelte
login function we knew and loved at the end of Chapter 6. Here is where we stand:
file: app/controllers/user_controller.rb

def login

@title = "Log in to RailsSpace"

if request.get?

@user = User.new(:remember_me => cookies[:remember_me] || "0")

elsif param_posted?(:user)

@user = User.new(params[:user])

user = User.find_by_screen_name_and_password(@user.screen_name,

@user.password)

if user

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 263 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

user.login!(session)

if @user.remember_me == "1"

cookies[:remember_me] = { :value => "1",

:expires => 10.years.from_now }

user.authorization_token = Digest::SHA1.hexdigest(

"#{user.screen_name}:#{user.password}")

user.save!

cookies[:authorization_token] = {

:value => user.authorization_token,

:expires => 10.years.from_now }

else

cookies.delete(:remember_me)

cookies.delete(:authorization_token)

end

flash[:notice] = "User #{user.screen_name} logged in!"

redirect_to_forwarding_url

else

@user.clear_password!

flash[:notice] = "Invalid screen name/password combination"

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 264 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

end

Now that we've updated our test suite to exercise all of the remember me machinery, it's
time to refactor this puppy. Let's start by changing the code we use to remember the user.

7.5.1. Refactoring Remember
If you look at the code between if @user.remember_me == "1" and else, you'll see
that it's basically all concerned with remembering the user. This is similar in many ways to
recording the user's login status with login!, so let's go with that analogy and define a user
method called remember!. In order to get it to work, we only have to do two things: change
user to self, and move the line requiring the SHA1 library from the User controller to the
User model:
file: app/models/user.rb

require 'digest/sha1'

class User < ActiveRecord::Base

.

.

.

Remember a user for future login.

def remember!(cookies)

cookies[:remember_me] = { :value => "1",

:expires => 10.years.from_now }

self.authorization_token = Digest::SHA1.hexdigest(

"#{self.screen_name}:#{self.password}")

self.save!

cookies[:authorization_token] = {

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 265 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

:value => self.authorization_token,

:expires => 10.years.from_now }

end

end

The login action is already cleaned up considerably:
file: app/controllers/user_controller.rb

def login

.

.

.

if user

user.login!(session)

if @user.remember_me == "1"

user.remember!(cookies)

else

cookies.delete(:remember_me)

cookies.delete(:authorization_token)

end

.

.

.

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 266 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Let's turn now to beautifying the remember! function. We learned in Section 6.6.2 that we
can omit the self keyword when accessing functions or attributes that are part of the class,
so that (for example) id is the same as self.id. There's a bit of a subtlety, though; we can
eliminate most of the selfs, but we have to keep the self in front of
authorization_token. As we noted in Section 6.6.4, in order to assign to an object's
attribute, we have to prefix the variable name with self; otherwise, Ruby would simply
create a local variable called authorization_token.
With this one caveat, we can rewrite remember! as follows:
file: app/models/user.rb

Remember a user for future login.

def remember!(cookies)

cookie_expiration = 10.years.from_now

cookies[:remember_me] = { :value => "1",

:expires => cookie_expiration }

self.authorization_token = Digest::SHA1.hexdigest(

"#{screen_name}:#{password}")

save!

cookies[:authorization_token] = { :value => authorization_token,

:expires => cookie_expiration }

end

Note that we've taken this opportunity to bind the cookie expiration date to the variable
cookie_expiration, both for readability and because we use it twice in this function.
We're pretty sure that we want to use SHA1 to make the user authorization token, at least for
now, but in the future we might want to change to a different hashing algorithm. We can
make the remember! function a little more flexible by building an abstraction layer between
the unique identifier we use to remember the user and the algorithm we use to generate it:
file: app/models/user.rb

Remember a user for future login.

def remember!(cookies)

cookie_expiration = 10.years.from_now

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 267 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

cookies[:remember_me] = { :value => "1",

:expires => cookie_expiration }

self.authorization_token = unique_identifier

save!

cookies[:authorization_token] = { :value => authorization_token,

:expires => cookie_expiration }

end

private

Generate a unique identifier for a user.

def unique_identifier

Digest::SHA1.hexdigest("#{screen_name}:#{password}")

end

7.5.2. Refactoring Forget
In addition to a bunch of code to remember the user, there's a second (two-line) block of
code that simply forgets the user by deleting the cookies. Let's reorganize that code into its
own function, called (naturally enough) forget!. While we're at it, we'll make a utility
function to hide the ugly explicit comparison in @user.remember_me == "1" by defining
a remember_me? function in the User model. With these enhancements, the relevant chunk
of the login action appears as follows:
file: app/controllers/user_controller.rb

def login

.

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 268 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

if user

user.login!(session)

if @user.remember_me?

user.remember!(cookies)

else

user.forget!(cookies)

end

.

.

.

end

And here are the new functions in the model:
file: app/models/user.rb

Remember a user for future login.

def remember!(cookies)

.

.

.

end

Forget a user's login status.

def forget!(cookies)

cookies.delete(:remember_me)

cookies.delete(:authorization_token)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 269 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

Return true if the user wants the login status remembered.

def remember_me?

remember_me == "1"

end

.

.

.

Note that we've omitted the explicit self keyword inside the remember_me? function.

7.5.3. Just Two More Bits of Polish
We've already come a long way with the login action, but there a couple more refinements
we just can't resist. The first is to replace cookies[:remember_me] || "0" with a short
function explicitly indicating its purpose, namely, a string indicating the status of the
remember me checkbox:
file: app/controllers/user_controller.rb

def login

@title = "Log in to RailsSpace"

if request.get?

@user = User.new(:remember_me => remember_me_string)

.

.

.

end

.

.

.

private

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 270 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

.

.

Return a string with the status of the remember me checkbox.

def remember_me_string

cookies[:remember_me] || "0"

end

That's a distinctly minor improvement, and we couldn't really fault you for not making it. The
final refinement, though, is one of our favorites, and we really hope you'll come to like it as
much as we do. Let's take another look at the remember me control flow:

if @user.remember_me?

user.remember!(cookies)

else

user.forget!(cookies)

end

This five-line pattern is extraordinarily common and a bit cumbersome; it can be replaced by
an equivalent but pithier construction using the wonderful ternary operator (see box). With
that replacement made, our login action finally assumes its fully refactored form:
file: app/controllers/user_controller.rb

def login

@title = "Log in to RailsSpace"

if request.get?

@user = User.new(:remember_me => remember_me_string)

elsif param_posted?(:user)

@user = User.new(params[:user])

user = User.find_by_screen_name_and_password(@user.screen_name,

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 271 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

@user.password)

if user

user.login!(session)

@user.remember_me? ? user.remember!(cookies) : user.forget!(cookies)

flash[:notice] = "User #{user.screen_name} logged in!"

redirect_to_forwarding_url

else

@user.clear_password!

flash[:notice] = "Invalid screen name/password combination"

end

end

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 272 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

10 types of people

There are 10 kinds of people in the world: those who like the ternary operator,
those who don't, and those who don't know about it. (If you happen to be in the
third category, soon you won't be any longer.)
When you do a lot of coding, you quickly learn that one of the most common bits
of control flow goes something like this:

if boolean?

do_one_thing

else

do_something_else

end

Ruby, like many other languages (including C, Perl, PHP, and Java), allows you to
replace this with a much more compact expression using the little-used but oh-
so-useful ternary operator (so-called because it consists of three parts):

boolean? ? do_one_thing : do_something_else

You can even use the ternary operator to replace assignment:

if boolean?

var = foo

else

var = bar

end

becomes

var = boolean? ? foo : bar

Even though it looks a little obscure, the 5:1 line compression is (in our estimation)
well worth the potential confusion. We'll always be on the lookout for a chance
to shrink our code using the ternary operator.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 273 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

7.5.4. The Fully Refactored Login Function
We're now done with our refactoring. Let's take a look at where we started and where we
ended up. Expanding all of the refactored components (including those from Chapter 6), we
effectively began with this ugly monstrosity:
file: app/controllers/user_controller.rb

def login

@title = "Log in to RailsSpace"

if request.get?

@user = User.new(:remember_me => cookies[:remember_me] || "0")

elsif request.post? and params[:user]

@user = User.new(params[:user])

user = User.find_by_screen_name_and_password(@user.screen_name,

@user.password)

if user

session[:user_id] = user.id

if @user.remember_me == "1"

cookies[:remember_me] = { :value => "1",

:expires => 10.years.from_now }

user.authorization_token = Digest::SHA1.hexdigest(

"#{user.screen_name}:#{user.password}")

user.save!

cookies[:authorization_token] = {

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 274 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

:value => user.authorization_token,

:expires => 10.years.from_now }

else

cookies.delete(:remember_me)

cookies.delete(:authorization_token)

end

flash[:notice] = "User #{user.screen_name} logged in!"

if (redirect_url = session[:protected_page])

session[:protected_page] = nil

redirect_to redirect_url

else

redirect_to :action => "index"

end

else

Don't show the password again in the view.

@user.password = nil

flash[:notice] = "Invalid screen name/password combination"

end

end

end

We ended up with a much more compact and readable login function:
file: app/controllers/user_controller.rb

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 275 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

def login

@title = "Log in to RailsSpace"

if request.get?

@user = User.new(:remember_me => remember_me_string)

elsif param_posted?(:user)

@user = User.new(params[:user])

user = User.find_by_screen_name_and_password(@user.screen_name,

@user.password)

if user

user.login!(session)

@user.remember_me? ? user.remember!(cookies) : user.forget!(cookies)

flash[:notice] = "User #{user.screen_name} logged in!"

redirect_to_forwarding_url

else

@user.clear_password!

flash[:notice] = "Invalid screen name/password combination"

end

end

end

It may seem like we're cheating a bit here; after all, the refactored function is so much more
compact only because we brushed the code complexity dust under an abstraction layer rug.
This practice doesn't necessarily result in less total code, so does it really do us any good?
Absolutely—even when they don't save us any lines of code, abstraction layers reduce the

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 276 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

mental overhead of programming by allowing us to ignore irrelevant details and focus on
higher-level constructs. Of course, by eliminating or preventing code duplication, abstraction
layers nearly always result in fewer lines of code as well.

7.5.5. Some Parting Thoughts
So far in RailsSpace we've focused on writing (possibly ugly) working functions, testing them,
and then refactoring if necessary. This has allowed us to focus on the many new ideas we
have introduced rather than getting caught up in premature refinement. Because we've now
laid a foundation for understanding the basics of Rails, throughout the rest of this book we'll
usually build abstraction layers preemptively, before our code gets ugly. Bear in mind,
though, that even when you aggressively capture patterns in abstractions, code has a way
of getting crufty nonetheless. When that happens, we hope that the refactoring lessons from
Chapters 6 and 7 prove valuable.
Finally, it's always nice to take a look at our stats:

> rake stats
(in /rails/rails_space)
+----------------------+-------+-------+---------+---------+-----+-------+
| Name | Lines | LOC | Classes | Methods | M/C | LOC/M |
+----------------------+-------+-------+---------+---------+-----+-------+
| Controllers | 123 | 97 | 3 | 12 | 4 | 6 |
| Helpers | 17 | 13 | 0 | 2 | 0 | 4 |
| Models | 74 | 54 | 1 | 7 | 7 | 5 |
| Libraries | 0 | 0 | 0 | 0 | 0 | 0 |
| Components | 0 | 0 | 0 | 0 | 0 | 0 |
| Integration tests | 25 | 17 | 1 | 2 | 2 | 6 |
| Functional tests | 347 | 263 | 4 | 28 | 7 | 7 |
| Unit tests | 161 | 113 | 1 | 13 | 13 | 6 |
+----------------------+-------+-------+---------+---------+-----+-------+
| Total | 747 | 557 | 10 | 64 | 6 | 6 |
+----------------------+-------+-------+---------+---------+-----+-------+
 Code LOC: 164 Test LOC: 393 Code to Test Ratio: 1:2.4

8. Updating user information

We're nearly ready to start building the social networking aspects of RailsSpace, but there
are a couple of loose ends to tie off before we leave the User model. In Chapter 4, we
developed a registration page to create users for RailsSpace, each with a screen name, email
address, and password. It's time to give our users the ability to edit (some of) these attributes.
We'll start by fleshing out the user hub (introduced in Section 4.3.4) with the basic user
information. Then we'll set up a form to edit the email address and password, and write the

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 277 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

edit action to handle the input from the form. Finally, we'll write tests for the new user
information update functionality.
It's important to note that we will not allow users to change their screen names. The reason
is that we would like to incorporate screen names into URLs. For example, it would be nice
for the address of each RailsSpace profile to be something like

http://RailsSpace.com/profile/<screen_name>

(We'll achieve this goal in Chapter 9.) We also plan to use the screen name in the URLs for
email messages (Chapter 13) and the friendship request system (Chapter 14). Allowing users
to change their screen names would break these URLs, so we've decided not to allow it.
We'll see that, in the process of making the edit form and writing the new tests, we will
generate a lot of duplicated code. We've already seen some of the ways Rails makes it possible
to eliminate duplication; in this chapter, we'll introduce two new methods: Rails partials and
the Rails test helper.

8.1. A Non-Stub Hub
As a first step toward building up the RailsSpace user hub, let's add the user's basic
information. To get this to work, we first need to find the user:
file: app/controllers/user_controller.rb

def index

@title = "RailsSpace User Hub"

@user = User.find(session[:user_id])

end

Note that, instead of a fancy function like find_by_screen_name_and_password, we
simply use User.find to find the user by id. Since accessing the hub requires a logged-in
user (as enforced by our before filter from Chapter 6), we can just use the user id from the
session.
The view is simple:
file: app/views/user/index.rhtml

<h2>Your basic information</h2>

Screen name: <%= @user.screen_name %>

Email: <%= @user.email %>

Password: *******

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 278 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<%= link_to "Edit my info", :action => "edit" %>

Note that we've hard-coded the password for security purposes. We've also taken this
opportunity to add a link to the user's edit action. The result is shown in Fig. 8.1.

Figure 8.1. The logged-in user experience begins to take form.

[View full size image]

8.2. Updating the eMail Address
Updating the email address is easy with Rails. We start with a basic edit form, which is similar
to those we have seen before:
file: app/views/user/edit.rhtml

<h2><%= @title %></h2>

<%= error_messages_for 'user' %>

<% form_for :user do |form| %>

<fieldset>

<legend>Email</legend>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 279 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyX2ExZ3Bqc3VoOF8vY19iX2gudHBsMWk-

<div class="form_row">

<label for="email">Email:</label>

<%= form.text_field :email,

:size => User::EMAIL_SIZE,

:maxlength => User::EMAIL_MAX_LENGTH %>

</div>

<div class="form_row">

<%= submit_tag "Update", :class => "submit" %>

</div>

</fieldset>

<% end %>

Note that we have once again made use of the User model constants.
The action is also similar to the register and login actions we've seen, with one main
difference: instead of creating a new user instance, as in the case of the register action, we
update a current user using the Active Record update_attributes function:
file: app/controllers/user_controller.rb

Edit the user's basic info.

def edit

@title = "Edit basic info"

@user = User.find(session[:user_id])

if param_posted?(:user)

if @user.update_attributes(params[:user])

flash[:notice] = "Email updated."

redirect_to :action => "index"

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 280 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

end

end

In this function, @user.update_attributes(params[:user]) updates the attributes
of @user corresponding to the hash in params[:user]. In other words, if params
[:user] is :email => "new_email@example.com", update_attributes changes
the user's email address in the database. Moreover, it performs all the same validations as
@user.save, so invalid email addresses will automatically be caught; since we put

<%= error_messages_for 'user' %>

in the view, this will result in an appropriate error message being displayed back to the user
(Fig. 8.2).

Figure 8.2. Editing the email address (with error).

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 281 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyZW1fYXJwX19zZGg4X2MvX2l0ZWxyaWxlb2FydDJpLmpncA--

There's one final touch before we move on to password editing. Since only logged-in users
of RailsSpace can edit their information, we need to add our new edit action to the page
protection before_filter:
file: app/controllers/user_controller.rb

class UserController < ApplicationController

before_filter :protect, :only => [:index, :edit]

.

.

.

With this, a logged-in user (and only a logged-id user) can update his email address (Fig.
8.3).

Figure 8.3. Changing the email address to bazquux@example.com.

[View full size image]

8.3. Updating Password
In contrast to the email update, the password update machinery is surprisingly challenging,
but it's made much easier by some clever Rails magic. Most of the complexity comes from

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 282 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyZW1fbW9wcl9zZGg4X2MvX2l0ZWxuaWFjZmFpdDNpaWFvdHBsXy5nam4-

including a confirmation box in the password edit form. As before, we use form_for
function to build up our form, with three fields, one each for the current password, the new
password, and the password confirmation:
file: app/views/user/edit.rhtml

<h2><%= @title %></h2>
<%= error_messages_for 'user' %>
<% form_for :user do |form| %>
<fieldset>
 <legend>Email</legend>
 .
 .
 .
</fieldset>
<% end %>

<% form_for :user do |form| %>
<fieldset>
 <legend>Password</legend>
 <div class="form_row">
 <label for="current_password">Current password:</label>
<%= form.password_field :current_password,
 :size => User::PASSWORD_SIZE,
 :maxlength => User::PASSWORD_MAX_LENGTH %>
</div>

<div class="form_row">
 <label for="password">New password:</label>
 <%= form.password_field :password,
 :size => User::PASSWORD_SIZE,
 :maxlength => User::PASSWORD_MAX_LENGTH %>
 </div>

 <div class="form_row">
 <label for="password_confirmation">Confirm:</label>
 <%= form.password_field :password_confirmation,
 :size => User::PASSWORD_SIZE,
 :maxlength => User::PASSWORD_MAX_LENGTH %>
 </div>

 <%= submit_tag "Update", :class => "submit" %>
</fieldset>
<% end %>

That's a lot of new code, but the structure is simple: we just have form rows for the current
password, the new password, and the password confirmation, with each field being
generated using form.password_field. (If this password code looks awfully repetitive,
you're ahead of the game; see Section 8.5 below.) Note that the argument to
form.password_field for the new password field is password rather than
new_password; this is simply because otherwise we would have to add a
new_password attribute to the User model (since form_for uses the user.password
attribute).
Unlike the new password field, in order to handle the current password field we do have to
add a new attribute, since the User model doesn't have a current password attribute. We'll

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 283 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

use the same attr_accessor technique we use for the remember me attribute (Section
7.1.2); at the same time, we'll add a validation enforcing the proper password confirmation:
file: app/models/user.rb

class User < ActiveRecord::Base

attr_accessor :remember_me

attr_accessor :current_password

.

.

.

validates_uniqueness_of :screen_name, :email

validates_confirmation_of :password

.

.

.

end

But wait—the form has a field for password_confirmation. Why don't we have to add
a password_confirmation attribute the way we did for current_password? Since
text and password field confirmations are so common, Rails makes it easy to make them
simply by appending _confirmation to the attribute name; Rails then creates a
confirmation attribute on the fly and compares it to the original field. In other words, when
trying to save or update a user, validates_confirmation_of :password
automatically looks for a password_confirmation attribute and compares it to the
password attribute, yielding an error if they don't match.
With this new code in place, the edit page is poised to edit passwords as well as email (Fig.
8.4). Unfortunately, the new password field is pre-filled with the (cleartext) value of
@user.password, a problem we encountered before in Section 6.6.4. The solution is to use
the clear_password! method from that section (updated to clear all the different
passwords):

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 284 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Figure 8.4. The edit page with password added.

[View full size image]

file: app/models/user.rb
Clear the password (typically to suppress its display in a view).

def clear_password!

self.password = nil

self.password_confirmation = nil

self.current_password = nil

end

Then we simply add a line to the end of the edit action:
file: app/controllers/user_controller.rb

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 285 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyb3J3X3RwZGRzYWg4X2MvX3NzcGVfX2FpYmRhbDRpdGcucGo-

Edit the user's basic info.

def edit

.

.

.

For security purposes, never fill in password fields.

@user.clear_password!

end

With that, our edit form—or at least its appearance—is complete (Fig. 8.5).

Figure 8.5. The final edit form.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 286 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyZm9fbG5wYWZzZGg4X2MvX2l0ZV9hbXRpbHJfLjVpanBn

8.3.1. Handling Password Submissions
As we hinted at the end of the last section, we're not quite done with the edit form yet. In
order to handle both Email in password editing from the same form, we need to tell the action
which of the two forms was submitted. HTML has form a tag for a hidden elements for just
this sort of situation; naturally, Rails as a helper for generating such tags. We'll make a hidden
field called "attribute" whose value will be either "email" or "password":
file: app/views/user/edit.rhtml

.

.

.

<legend>Update Your Email</legend>

<%= hidden_field_tag "attribute", "email", :id => nil%>

.

.

.

<legend>Update Your Password</legend>

<%= hidden_field_tag "attribute", "password", :id => nil %>

.

.

.

The embedded Ruby

<%= hidden_field_tag "attribute", "password", :id => nil %>

generates the HTML

<input name="attribute" type="hidden" value="email" />

(We include :id => nil because otherwise hidden_field_tag gives both hidden
attributes the same id, which is not valid XHTML.)
With the edit form thus updated, the attribute to be edited will show up in params
[:attribute], which will be either "email" or "password". In the edit action, for
convenience we'll first assign this value to the variable attribute, and then use the Ruby
case statement to determine the proper course of action[1]:

[1] By restricting valid attributes to "email" and "password", this version of edit is actually superior to the previous one. The action in Section 8.2 technically allowed
a user to change his screen name by posting the appropriate parameters from an external form.

Edit the user's basic info.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 287 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

def edit

@title = "Edit basic info"

@user = User.find(session[:user_id])

if param_posted?(:user)

attribute = params[:attribute]

case attribute

when "email"

try_to_update @user, attribute

when "password"

Handle password submission.

end

end

For security purposes, never fill in password fields.

@user.clear_password!

end

private

.

.

.

Try to update the user, redirecting if successful.

def try_to_update(user, attribute)

if user.update_attributes(params[:user])

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 288 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

flash[:notice] = "User #{attribute} updated."

redirect_to :action => "index"

end

end

Here we've packaged the update attempt in the try_to_update in anticipation of using
that code again when trying to update the password attribute.
The case expression is simple to use, and is essentially a more convenient way of switching
on the values of the variable than if...elsif; the code

case foo

when "bar"

puts "It's a bar!"

when "baz"

puts "It's a baz!"

end

is equivalent to

if foo == "bar"

puts "It's a bar!"

elsif foo == "baz"

puts "It's a baz!"

end

This doesn't necessarily save any code—in fact, in this example it's actually longer—but
sometimes it just feels more natural to use a case statement. (This is one of those times.)
Of course, we punted on the actual password handling above, mainly because it relies on
two utility functions, one of which is rather sophisticated. Once we've defined those helpers,
which are User model methods called correct_password? and password_errors, the
final form of the added action is as follows:
file: app/controllers/user_controller.rb

Edit the user's basic info.

def edit

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 289 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

@title = "Edit basic info"

@user = User.find(session[:user_id])

if param_posted?(:user)

attribute = params[:attribute]

case attribute

when "email"

try_to_update @user, attribute

when "password"

if @user.correct_password?(params)

try_to_update @user, attribute

else

@user.password_errors(params)

end

end

end

For security purposes, never fill in password fields.

@user.clear_password!

end

The utility functions for the password edit action are alternately simple and complex. The
correct_password? function is extremely simple, to the point of perhaps being
unnecessary:
file: app/models/user.rb

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 290 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Return true if the password from params is correct.

def correct_password?(params)

current_password = params[:user][:current_password]

password == current_password

end

The password_errors function, on the other hand, is significantly more difficult. If we fall
through to that part of the edit function, we need to test to see if the new password and
its confirmation match. The most robust way to do this is to assign the values from
params to our User object and then call valid?, which creates the proper error messages
as a side effect:
file: app/models/user.rb

Generate messages for password errors.

def password_errors(params)

Use User model's valid? method to generate error messages

for a password mismatch (if any).

self.password = params[:user][:password]

self.password_confirmation = params[:user][:password_confirmation]

valid?

The current password is incorrect, so add an error message.

errors.add(:current_password, "is incorrect")

end

As you may recall from the discussion of validations starting in Section 3.2.3, validations add
error messages to an internal Rails object called errors. In our case, if we reach the else
branch under when "password", it must be that the current (submitted) password doesn't
match the user's actual password, so the last line of the function adds an error message to
that effect (Fig. 8.6). (This doesn't happen automatically since current_password is not a
column in the User model.)

Figure 8.6. Errors generated manually and using the valid? function.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 291 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFycGFfb2Rwcm9zZGg4X2MvX2l0ZXdfc3JyZXNyczZpXy5hcGp0Z2w-

That was quite a bit of effort, but our reward is the ability to update user passwords and email
addresses from the same form, with validations and password confirmation.

8.4. Testing User Edits
Even though we've only added two new actions, there are a lot of new things to test: the
HTML structure of each form; successful edits for screen name, email address, and password;
and failures for all of the main failure modes. Since we've already covered testing in such
detail, we aren't going to put the full text of all of the tests in this chapter. On the other hand,
testing is an essential part of Rails, so we will summarize what some of the tests look like. The
full test suite is available for download at http://RailsSpace.com/book/.
Writing tests is good practice in any case, of course, but we have a second motivation: the
views for editing user attributes share a lot of HTML structure in common with the register
and login views (register.rhtml and login.rhtml). In Section 8.5, we'll eliminate this
unnecessary duplication, and (as usual) having tests working beforehand will give us
confidence that the updated code works correctly.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 292 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://RailsSpace.com/book/

8.4.1. Test Helpers
In the process of writing tests for the user edit functions, you would notice a lot of common
tasks being replicated by hand, especially in the HTML tests. To simplify these tests, it's helpful
to define a variety of helper functions. We'll put some of these tests in
user_controller_test.rb as we have with functions such as try_to_login,
authorize, and friendly_URL_forwarding_aux. Some of the helper functions,
though, are likely to have the general use across different controller tests, and Rails provides
a special file called test_helper.rb for such general-use functions, which are available
to any functional, unit, or integration test[2].

[2] If authorize seems like just such a general-use function, you're exactly right; we'll promote it to test_helper.rb in Section 9.3.5 when we begin testing the controllers
for RailsSpace user profiles.

Here are a couple of simple examples of functions we expect to be used by multiple controller
tests:
file: test/test_helper.rb

ENV["RAILS_ENV"] = "test"

require File.expand_path(File.dirname(__FILE__) + "/../config/environment")

require 'test_help'

class Test::Unit::TestCase

.

.

.

Add more helper methods to be used by all tests here...

Assert the form tag.

def assert_form_tag(action)

assert_tag "form", :attributes => { :action => action,

:method => "post" }

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 293 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Assert submit button with optional label.

def assert_submit_button(button_label = nil)

if button_label

assert_tag "input", :attributes => { :type => "submit",

:value => button_label }

else

assert_tag "input", :attributes => { :type => "submit" }

end

end

end

Even though these assertions are very simple, we expect that asserting the presence of form
tags and submit buttons will be common to views from other controllers, so we have placed
them in the file test/test_helper.rb.
Looking over the User controller tests, you might notice a common pattern of asserting the
presence of an input field with a particular name, type (such as text or password), size, and
maximum length. We can capture this pattern in a second helper function called
assert_input_field:
file: test/test_helper.rb

.

.

.

Add more helper methods to be used by all tests here...

.

.

.

ERROR_DIV = { :tag => "div", :attributes => { :class => "fieldWithErrors" } }

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 294 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Assert existence of form input field with attributes.

def assert_input_field(name, value, field_type, size, maxlength, options = {})

attributes = { :name => name,

:type => field_type,

:size => size,

:maxlength => maxlength }

Surprisingly, attributes[:value] == nil is different from attributes

 # not having a :value key at all.
 attributes[:value] = value unless value.nil?
 tag = { :tag => "input", :attributes => attributes }
 # Merge tag hash with options, especially to handle :parent => ERROR_DIV
 # option in error tests.
 tag.merge!(options)
 assert_tag tag
end

Note the use of the merge! function (which we first met in Section 7.3.1) to add options to
the tag hash.
With assert_input_field, we can write compact HTML assertions as follows:
file: test/functional/user_controller_test.rb

private

.

.

.

Some utility assertions for testing HTML.

Assert that the email field has the correct HTML.

def assert_email_field(email = nil, options = {})

assert_input_field("user[email]", email, "text",

User::EMAIL_SIZE, User::EMAIL_MAX_LENGTH,

options)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 295 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

Assert that the password field has the correct HTML.

def assert_password_field(password_field_name = "password", options = {})

We never want a password to appear pre-filled into a form.

blank = nil

assert_input_field("user[#{password_field_name}]", blank, "password",

User::PASSWORD_SIZE, User::PASSWORD_MAX_LENGTH,

options)

end

Assert that the screen name field has the correct HTML.

def assert_screen_name_field(screen_name = nil, options = {})

assert_input_field("user[screen_name]", screen_name, "text",

User::SCREEN_NAME_SIZE, User::SCREEN_NAME_MAX_LENGTH,

options)

end

Since we expect these assertions to be of more restricted use, we've placed them in
user_controller_test.rb.
With our judiciously chosen test utility functions, some rather verbose tests can be simplified
considerably. In Section 5.4.2, for example, we wrote the following:
file: test/functional/user_controller_test.rb

Make sure the registration page responds with the proper form.

def test_registration_page

get :register

title = assigns(:title)

assert_equal "Register", title

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 296 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

assert_response :success

assert_template "register"

Test the form and all its tags.

assert_tag "form", :attributes => { :action => "/user/register",

:method => "post" }

assert_tag "input",

:attributes => { :name => "user[screen_name]",

:type => "text",

:size => User::SCREEN_NAME_SIZE,

:maxlength => User::SCREEN_NAME_MAX_LENGTH }

assert_tag "input",

:attributes => { :name => "user[email]",

:type => "text",

:size => User::EMAIL_SIZE,

:maxlength => User::EMAIL_MAX_LENGTH }

assert_tag "input",

:attributes => { :name => "user[password]",

:type => "password",

:size => User::PASSWORD_SIZE,

:maxlength => User::PASSWORD_MAX_LENGTH }

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 297 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

assert_tag "input", :attributes => { :type => "submit",

:value => "Login!" }

end

With the helper functions as defined above, the test is both shorter and easier to understand:
file: test/functional/user_controller_test.rb

Make sure the registration page responds with the proper form.

def test_registration_page

get :register

title = assigns(:title)

assert_equal "Register", title

assert_response :success

assert_template "register"

Test the form and all its tags.

assert_form_tag "/user/register"

assert_screen_name_field

assert_email_field

assert_password_field

assert_submit_button "Register!"

end

8.4.2. Testing the Edit Page
In this section, we'll test the edit page for the email and password fields. As with the tests of
the login and register pages, to test the edit page we first verify the basic properties (title,
HTTP response, and rhtml template), followed by tests of the form HTML—in this case, fields

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 298 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

for the email address and passwords. Since we're editing attributes which already exist, these
fields should be pre-filled with the user's current information; not coincidentally, we designed
both assert_screen_name_field and assert_email_field to take optional
arguments for the values of their respective fields.
With the helper functions from Section 8.4.1 in hand, the test for the edit page is nicely
succinct:
file: test/functional/user_controller_test.rb

Test the edit page.

def test_edit_page

authorize @valid_user

get :edit

title = assigns(:title)

assert_equal "Edit basic info", title

assert_response :success

assert_template "edit"

Test the form and all its tags.

assert_form_tag "/user/edit"

assert_email_field @valid_user.email

assert_password_field "current_password"

assert_password_field

assert_password_field "password_confirmation"

assert_submit_button "Update"

end

Running this gives

> ruby test/functional/user_controller_test.rb -n test_edit_page

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 299 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Loaded suite test/functional/user_controller_test

Started

.

Finished in 0.172981 seconds.

1 tests, 9 assertions, 0 failures, 0 errors

8.4.3. An Advanced Test
Before leaving the subject of testing, we'd like to mention another use of test helpers. When
writing tests for the User model in Section 5.5, we tested the minimum and maximum length
for the various user attributes. One test, for example, verified that the validation for the
minimum length of the screen name works correctly:
file: test/unit/user_test.rb

def test_screen_name_minimum_length

user = @valid_user

min_length = User::SCREEN_NAME_MIN_LENGTH

Screen name is too short.

user.screen_name = "a" * (min_length - 1)

assert !user.valid?, "#{user.screen_name} should raise a minimum length error"

Format the error message based on minimum length.

correct_error_message = sprintf(@error_messages[:too_short], min_length)

assert_equal correct_error_message, user.errors.on(:screen_name)

Screen name is minimum length.

user.screen_name = "a" * min_length

assert user.valid?, "#{user.screen_name} should be just long enough to pass"

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 300 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

There are several similar functions for the maximum length of the screen name, the minimum
and maximum length of the password, and the maximum length of the email address.
We encountered these tests in the first chapter to include any tests, so it didn't make sense
to get too fancy at the time. Now that we have more experience with Ruby and Rails, the time
has come for a test helper to capture the common pattern represented by these functions.
The resulting assert_length function is fairly advanced (requiring, among other things,
two additional helpers, barely_invalid_string and correct_error_message),
and we present it without detailed explanation, but you are probably in a position by now
either to understand it or to figure it out[3]:

[3] Note in particular the var = foo || bar construction, which assigns foo to var unless foo is nil (or false), in which case var is bar. We will see many examples
of this idea throughout the rest of the book.

file: test/test_helper.rb
Test the minimum or maximum length of an attribute.

def assert_length(boundary, object, attribute, length)

valid_char = options[:valid_char] || "a"

barely_invalid = barely_invalid_string(boundary, length, valid_char)

Test one over the boundary.

object[attribute] = barely_invalid

assert !object.valid?,

"#{object[attribute]} (length #{object[attribute].length}) " +

"should raise a length error"

assert_equal correct_error_message(boundary, length),

object.errors.on(attribute)

Test the boundary itself.

barely_valid = valid_char * length

object[attribute] = barely_valid

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 301 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

assert object.valid?,

"#{object[attribute]} (length #{object[attribute].length}) " +

"should be on the boundary of validity"

end

Create an attribute that is just barely invalid.

def barely_invalid_string(boundary, length, valid_char)

if boundary == :max

invalid_length = length + 1

elsif boundary == :min

invalid_length = length - 1

else

raise ArgumentError, "boundary must be :max or :min"

end

valid_char * invalid_length

end

Return the correct error message for the length test.

def correct_error_message(boundary, length)

error_messages = ActiveRecord::Errors.default_error_messages

 if boundary == :max
 sprintf(error_messages[:too_long], length)
 elsif boundary == :min
 sprintf(error_messages[:too_short], length)
 else
 raise ArgumentError, "boundary must be :max or :min"
 end
end

With this one utility function, we can collapse our length tests down to just a few lines; four
moderately long tests become two two-line tests:

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 302 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

file: test/unit/user_test.rb
def test_screen_name_length_boundaries

assert_length :min, @valid_user, :screen_name, User::SCREEN_NAME_MIN_LENGTH

assert_length :max, @valid_user, :screen_name, User::SCREEN_NAME_MAX_LENGTH

end

def test_password_length_boundaries

assert_length :min, @valid_user, :password, User::PASSWORD_MIN_LENGTH

assert_length :max, @valid_user, :password, User::PASSWORD_MAX_LENGTH

end

Since assert_length contains multiple assertions, the tests give more than twelve
assertions instead of just four:

> ruby test/unit/user_test.rb -n /length_boundaries/

Loaded suite test/unit/user_test

Started

..

Finished in 0.181779 seconds.

2 tests, 12 assertions, 0 failures, 0 errors

Building such a general utility function can be a lot of work, but you'll have to admit that the
results are pretty sweet.

8.5. Partials
As per usual, now that we have our tests we can feel free to move things around and try to
eliminate duplication. In previous chapters, we've always eliminated duplication in models
or actions, but Rails also gives us a way to do the same thing in views using the facility called
partials.

8.5.1. Two Simple Partials
Considering RailsSpace as it currently stands, you may have noticed that the register, login,
and edit forms contain a lot of HTML in common. For example, register and edit forms both
contain this code snippet:

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 303 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

file: app/views/user/_email_field_row.rhtml
<div class="form_row">

<label for="email">Email:</label>

<%= form.text_field :email, :size => User::EMAIL_SIZE,

:maxlength => User::EMAIL_MAX_LENGTH %>

</div>

As you can tell from the filename above, we've extracted this common code into a file called
_email_field_row.rhtml. Note the leading underscore in the filename—it identifies
the file as a partial; that is to say, it's a partial rhtml file intended for use in the view. Among
other things, this underscore convention is useful for lumping all the partials together in a
directory listing.
Wherever the code in the partial appears, replace it with a command to render the partial:

<%= render :partial => "email_field_row", :locals => { :form => form } %>

Since we've given render the option :partial => "email_field_row" (without the
leading underscore), Rails knows to look for a partial file called
_email_field_row.rhtml, which according to the Rails convention is just the partial
name preceded by an underscore.
Since the email partial references the form variable generated by the form_for function
in each corresponding rhtml file, we need to send it a local variable called form, which we
do using the locals option. (Be careful not to get confused by the variable names; if the
register action used form_for :dude to generate the registration form, thereby creating
the dude variable, then we would write :locals => { :form => dude } when
rendering the partial. By using the symbol :form, we tell Rails to associate the variable
dude in the view with the local variable form in the partial.)
Now that we have the basic idea of partials, we can replace more repeated code. The
screening form code, for example, is also repeated across multiple forms:
file: app/views/user/_screen_name_field_row.rhtml

<div class="form_row">

<label for="screen_name">Screen name:</label>

<%= form.text_field :screen_name,

:size => User::SCREEN_NAME_SIZE,

:maxlength => User::SCREEN_NAME_MAX_LENGTH %>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 304 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

</div>

Its partial is then

<%= render :partial => "email_field_row", :locals => { :form => form } %>

8.5.2. A More Advanced Partial
Having captured the common form field pattern for screen name and email, it is natural to
do the same for the password field, which appears in register.rhtml, login.rhtml,
and edit.rhtml. There's a subtle difference compared to our previous cases, though: there
are several slight variations in the password name, both in the input tag itself and in the
text label for the field. For example, the password section on the login page looks like this:
file: app/views/user/login.rhtml

<div class="form_row">

<label for="password">Password:</label>

<%= form.password_field :password,

:size => User::PASSWORD_SIZE,

:maxlength => User::PASSWORD_MAX_LENGTH %>

</div>

In contrast, the edit view has a section that looks like this, with
for="current_password" and :current_password in place of for="password"
and :password:
file: app/views/user/edit.rhtml

<div class="form_row">

<label for="current_password">Current password:</label>

<%= form.password_field :current_password,

:size => User::PASSWORD_SIZE,

:maxlength => User::PASSWORD_MAX_LENGTH %>

</div>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 305 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

In order to make a partial for the password HTML, we need to do more than create a local
variable for form; we also need a local variable, which we will call field, that contains the
name of the label; for the examples above field will be alternately "password" and
"current_password". We therefore expect the partial to have a line like

<label for="<%= field %>">Password:</label>

Since we've adopted the convention that the label name is always the same as the argument
to the form.password_field function, field can actually do double duty: it's valid Ruby
to write

<%= form.password_field "current_password", ...

thereby using a string instead of a symbol. We will therefore be able to write

<%= form.password_field field, ...

in the partial.
Finally, the field title labeling the box changes depending on context; it's either
"Password" or "New password" in our example. In general, we'll associate that title with
a local variable called form_title. We don't always have to define this variable, though,
since field sometimes has the information we need. For example, when field =
"current_password", we can generate the title "Current password" using the
convenient humanize function:

> ruby script/console

Loading development environment.

>> field = "current_password"

=> "current_password"

>> field.humanize

=> "Current password"

Putting all of this together leads to the following partial:
file: app/views/user/_password_field_row.rhtml

<div class="form_row">

<label for="<%= field %>">

<%= field_title || field.humanize %>:

</label>

<%= form.password_field field,

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 306 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 :size => User::PASSWORD_SIZE,
 :maxlength => User::PASSWORD_MAX_LENGTH %>
</div>

This partial requires the form and field variables, and takes an optional field title variable
which gets used to label the row if present; otherwise, we use field.humanize.
With the partial defined as above, the edit view looks like this:
file: app/views/user/edit.rhtml

<h2><%= @title %></h2>

<%= error_messages_for 'user' %>

<% form_for :user do |form| %>

<fieldset>

<legend>Email</legend>

<%= render :partial => "email_field_row", :locals => { :form => form } %>

<%= hidden_field_tag "attribute", "email", :id => nil%>

<%= submit_tag "Update", :class => "submit" %>

</fieldset>

<% end %>

<% form_for :user do |form| %>

<fieldset>

<legend>Password</legend>

<%= render :partial => "password_field_row",

:locals => { :form => form,

:field => "current_password" } %>

<%= render :partial => "password_field_row",

:locals => { :form => form,

:field => "password",

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 307 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

:field_title => "New password" } %>

<%= render :partial => "password_field_row",

:locals => { :form => form,

:field => "password_confirmation",

:field_title => "Confirm" } %>

<%= hidden_field_tag "attribute", "password", :id => nil %>

<%= submit_tag "Update", :class => "submit" %>

</fieldset>

<% end %>

Note that the new password and password confirmation both get field_title variables,
but the current password doesn't need one since field.humanize does the job for us.

8.5.3. A Wrinkle, Then Done
The password partial as written above works fine if you go to the /user/edit page, but
there's one small wrinkle—if you run the test suite (which you should be in the habit of doing
frequently by now), you get a bunch of errors in the User controller test:

> ruby test/functional/user_controller_test.rb

.

.

.

...undefined local variable or method 'field_title'

where the dots represent a big chunk of omitted text.
The problem lies in the how tests handle local variable scope, which differs from the main
application in some subtle way (and which frankly we don't understand). The bottom line is
that the application knows to assign field_title the value nil if it's not set by the code
invoking the partial, but the test isn't quite that smart and field_title isn't even defined
unless set explicitly.
Luckily, there's an easy fix using the Ruby defined? function, which returns true if the
variable is defined and false otherwise. Our strategy is to check to see if there's a variable

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 308 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

called field_title; if not (as will be the case in the test), we'll create one and set it to
nil. This leads to the final form of our password partial:
file: app/views/user/_password_field_row.rhtml

<% field_title = nil if not defined?(field_title) -%>

<div class="form_row">

<label for="<%= field %>">

<%= field_title || field.humanize %>:

</label>

<%= form.password_field field,

:size => User::PASSWORD_SIZE,

:maxlength => User::PASSWORD_MAX_LENGTH %>

</div>

Embedded Ruby saves the day again!

8.5.4. Updating Login and Register
The whole point of creating the partials was to eliminate duplicated rhtml, so as a final step
we'll update the register and login views. The new login view is simpler, so we'll start with
that:
file: app/views/user/login.rhtml

<% form_for :user do |form| %>

<fieldset>

<legend><%= @title %></legend>

<%= render :partial => "screen_name_field_row",

:locals => { :form => form } %>

<%= render :partial => "password_field_row",

:locals => { :form => form, :field => "password" } %>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 309 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

.

.

The update to the register view is similar, and we even get a bonus: with our new password
partial, adding password confirmation to the registration page is a snap. We've already done
the heavy lifting by adding the proper validation to the User model, and we can render the
confirmation partial using the same code that we used in the edit view:
file: app/views/user/register.rhtml

<% form_for :user do |form| %>

<fieldset>

<legend>Enter Your Details</legend>

<%= error_messages_for 'user' %>

<%= render :partial => "screen_name_field_row",

:locals => { :form => form } %>

<%= render :partial => "email_field_row",

:locals => { :form => form } %>

<%= render :partial => "password_field_row",

:locals => { :form => form, :field => "password" } %>

<%= render :partial => "password_field_row",

:locals => { :form => form,

:field => "password_confirmation",

:field_title => "Confirm"} %>

<div class="form_row">

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 310 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<%= submit_tag "Register!", :class => "submit" %>

</div>

</fieldset>

<% end %>

This adds a nice refinement to RailsSpace registration (Fig. 8.7); before, an errant keystroke
in the password box during registration would leave our intrepid user unable to log in. Now,
it would take two identical errant keystrokes in two different boxes to achieve the same
lamentable result—a much less likely occurrence.

Figure 8.7. The registration page now handles password confirmation automatically.

[View full size image]

As a final step, it's probably a good idea to add a password confirmation assertion to the
registration page test:
file: test/functional/user_controller_test.rb

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 311 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFydGVzdGZwYW9zZWg4X2MvX2dpcmNpX2lucnJtbzdpbnRfai5scGdh

Make sure the registration page responds with the proper form.

def test_registration_page

.

.

.

assert_password_field "password_confirmation"

assert_submit_button "Register!"

end

This gives

> ruby test/functional/user_controller_test.rb -n test_registration_page

Loaded suite test/functional/user_controller_test

Started

.

Finished in 0.14769 seconds.

1 tests, 9 assertions, 0 failures, 0 errors

Part II: Building a social network

9. Personal profiles

In the first part of this book, we gave RailsSpace users the ability to register, login, and edit
their basic information. The rest of the book will be dedicated to building a social network
on this foundation. We'll start off in this chapter by creating a basic profile page consisting

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 312 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

of a user "specification" (or spec) and a personalized list of answers to Frequently Asked
Questions (the user FAQ). Future chapters will add search capabilities, a simple email
interface, a friendship system, and several upgrades to the user profile.
In the process of building the machinery to create, edit, and display user profiles, a lot of our
previous work will come together. We'll have occasion to make several new controllers, which
should help to clarify exactly what a controller is (or should be) (see box). We'll also finally
create a second model (and a third), which will give us the opportunity to show how to use
Rails to stitch data models together into one coherent whole. This chapter will also deepen
our understanding of partials, especially when used for presenting collections of data.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 313 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Controlling our controllers

Of the three parts of the MVC architecture, controllers are perhaps the most
confusing. What exactly is a controller, and how do we know when to create a
new one? A useful first step is to follow a simple convention:

1. Use nouns for controller names

2. Use verbs for action names

It's impossible to adhere strictly to these rules (index actions violate it, for
example), but together they form a good rule of thumb. As a concrete example,
consider our only nontrivial controller so far, the User controller, which has
(among others) login, logout, register, and edit actions.
In the process of developing RailsSpace, it might seem natural to use the User
controller for virtually everything, since everything has to do with users. If you
follow the noun/verb convention for controller/action, you'll find that using a
single controller quickly leads to lots of URLs of the form /user/edit_spec
and /user/show_profile. This is a strong linguistic hint that we've outgrown
a controller.
If you find yourself starting to define actions with underscores—especially if they
follow the template <verb>_<noun>—consider making a new controller
corresponding to the noun, and then define an action corresponding to the verb.
For example, instead of using /user/edit_spec to edit the user specification,
instead create a Spec controller and use /spec/edit.
You'll find that the resulting site architecture consists of many short, digestible
controllers, rather than one monolithic controller in charge of everything. As your
site grows, and you add additional features, you will find that each controller can
grow with it, becoming larger but never unwieldy. Each controller will then fulfill
the promise from Chapter 2 that a controller consists of "a container for a group
of related pages".

9.1. A User Profile Stub
Although we don't yet have anything to put on a user profile page, when developing websites
we find that even having a (nearly) blank page has great psychological value, since once it's
created "all we need to do is fill it in with stuff". In this section we'll create a stub for the user
profile, which will involve creating a Profile controller together with a few actions and views.
We'll also use Rails routes to make a pretty profile URL.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 314 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

9.1.1. Profile URLs
For our example user Foo Bar, whose screen name is foobar, it would be natural to display
the profile at the URL

http://www.RailsSpace.com/profile/foobar

(and similarly for other screen names). This suggests creating a Profile controller, which we'll
make using the generate script. Before we do, though, we have to address a subtlety:
according to the default Rails convention for URLs,

http://www.RailsSpace.com/profile/foobar

will look for an action called foobar, which isn't what we wanted at all. We can solve this
using essentially the same method that we used in Section 2.2.3 to get http://
localhost:3000 to point to the site index: we'll make an action display user profiles, and
then use routes.rb to remap the URL to the one we want. That is, the URL

http://www.RailsSpace.com/profile/foobar

will get mapped by routes.rb to the appropriate controller/action pair:

http://www.RailsSpace.com/profile/show/foobar

Note that, in the example above, we defined an action called show to display profiles; we
learned the hard way that display is not a valid action name (see box). Together with the
ever-present default index action, this suggests generating the Profile controller as follows:

> ruby script/generate controller Profile index show

exists app/controllers/

exists app/helpers/

exists app/views/profile

exists test/functional/

create app/controllers/profile_controller.rb

create test/functional/profile_controller_test.rb

create app/helpers/profile_helper.rb

create app/views/profile/index.rhtml

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 315 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

create app/views/profile/show.rhtml

displaying your ignorance

If you were to be so foolish as to create an action called display, you would find
that, no matter what you do, all instance variables in the corresponding view are
nil. As a result, such an action is a virtually useless.
What's the problem? The answer is that display is already a Ruby function, a
method attached to the Object class. We're not sure exactly what goes wrong,
but unintentionally overriding an Object method is evidently a Bad Thing. If you
find yourself wrestling with a problematic view, all of whose instance variables
are mysteriously nil, check out the Ruby documentation to make sure you're not
accidentally clashing with a predefined method.

Post-generate, a URL of the form /profile/show/foobar will already work (though it
will be blank). In order to get /profile/foobar to work, add the following line to the
routes file, somewhere above the default route:
file: config/routes.rb

map.connect 'profile/:screen_name', :controller => 'profile', :action => 'show'

.

.

.

Install the default route as the lowest priority.

map.connect ':controller/:action/:id'

Since this rule maps anything of the form /profile/foobar to /profile/show/
foobar, any other actions in the Profile controller would get mapped to /profile/show/
<action> and would therefore lead to an error—unless by chance some RailsSpace user
happened to choose that action as a screen name, and even in that case the result would be
to display that user's profile instead executing the action. What this means is that we can't
add any more actions to the Profile controller. This would be a crippling restriction in general,
which is one of the reasons we elected to make a dedicated Profile controller to show user
profiles. Any other actions associated with user profiles will go in other controllers.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 316 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

9.1.2. Profile Controller and Actions
As you might expect, the Profile controller itself is very simple:
file: app/controllers/profile_controller.rb

class ProfileController < ApplicationController

def index

@title = "RailsSpace Profiles"

end

def show

screen_name = params[:screen_name]

@user = User.find_by_screen_name(screen_name)

if @user

@title = "My RailsSpace Profile for #{screen_name}"

 else
 flash[:notice] = "No user #{screen_name} at RailsSpace!"
 redirect_to :action => "index"
 end
 end
end

You can see that we've decided to forward requests for invalid users to the Profile controller
index, along with a helpful flash error message.
Eventually, the view to show a user profile will be quite sophisticated (Section 9.6), but for
now we'll make it dirt simple:
file: app/views/profile/show.rhtml

<p>

The future home of <%= @user.screen_name %>.

</p>

This way, /profile/foobar exists (Fig. 9.1) and serves as a starting place for a real profile
later on.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 317 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Figure 9.1. The basic stub for Foo Bar's RailsSpace profile.

[View full size image]

The index action will always be simple, and will just be a reminder of the proper form for
RailsSpace profile URLs:
file: app/views/profile/index.rhtml

<p>

RailsSpace profile URLs are of the form

</p>
<blockquote>
 http://www.RailsSpace.com/profile/<i>screen_name</i>
</blockquote>

When trying to access an invalid profile, a visitor to RailsSpace now gets a helpful error
message, as shown in Fig. 9.2.

Figure 9.2. The profile index serves as an error page.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 318 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFybGV0aXBnYXNocjlfYy9fb2ZwXy4xbGpfcDFp
http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFybGVpbGlwYXNzcmg5X2MvX29mcGlubXRzZ19fLjJpanBn

9.2. User Specs
The most basic element of a RailsSpace user profile is the spec (short for "specification"). A
user spec contains simple facts about each user, including name and A/S/L (age/sex/location
for all you non-stalker types). Since RailsSpace is more about meeting people to work or share
ideas with than about hooking up[1], we'll also include a space for the user's occupation.

[1] Not that this describes any social networking sites we know of.

In principle, we could pack all of the spec information into the User model, but the same
could be said for virtually any information connected to a user. The result would be a giant
User model, with virtually no other models in our application. Instead, we'll create a new
model just for specs. Still, we need some way of indicating that specs and users are associated
with each other, and we'll see in this section how Rails (through its use of Active Record)
handles relationships between different models.

9.2.1. Generating the Spec Model
We've gotten pretty far with only one model, and the time has finally come to make a second
one. Recall from Section 3.1.2 that we can use generate to create the model and its
associated files:

> ruby script/generate model Spec

exists app/models/

exists test/unit/

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 319 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

exists test/fixtures/

create app/models/spec.rb

create test/unit/spec_test.rb

create test/fixtures/specs.yml

create db/migrate

create db/migrate/005_create_specs.rb

As in the case of the User model, the last act of generate is to create a migration file, which
we will use to construct the specs table in the database. We can create any kinds of columns
we want; we can always modify the Spec model by making another migration. The only
column we really have to create is user_id, which will identify the user corresponding to a
given spec. For now, we'll also include the user's first name, last name, gender, birthdate,
occupation, city, state, and zip code. With these choices for our initial columns, the migration
appears as follows:
file: db/migrate/005_create_specs.rb

class CreateSpecs < ActiveRecord::Migration

def self.up

create_table :specs do |t|

t.column :user_id, :integer, :null => false

t.column :first_name, :string, :default => ""

t.column :last_name, :string, :default => ""

t.column :gender, :string

t.column :birthdate, :date

t.column :occupation, :string, :default => ""

t.column :city, :string, :default => ""

t.column :state, :string, :default => ""

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 320 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

t.column :zip_code, :string, :default => ""

end

 end

def self.down

drop_table :specs

end

end

Note that the user_id, cannot be null (which in the database is the special value NULL)
since every spec must be associated with some user. We've also given a default value of ""
to most of the columns; otherwise, these attributes are nil by default, which would leave
us unable to validate their lengths, as we'll discuss further in Section 9.3.5.
As usual, run the migration to create the table:

> rake db:migrate

(in /rails/rails_space)

== CreateSpecs: migrating ==

-- create_table(:specs)

-> 0.1225s

== CreateSpecs: migrated (0.1227s) ===

9.2.2. The Spec Model
The Spec model is fairly simple: it needs just a few model constants and a handful of
validations. After filling in the blank template created by generate, the Spec model looks
like this:
file: app/models/spec.rb

class Spec < ActiveRecord::Base

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 321 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

ALL_FIELDS = %w(first_name last_name occupation gender birthdate

city state zip_code)

STRING_FIELDS = %w(first_name last_name occupation city state)

VALID_GENDERS = ["Male", "Female"]

START_YEAR = 1900

VALID_DATES = DateTime.new(START_YEAR)..DateTime.now

ZIP_CODE_LENGTH = 5

validates_length_of STRING_FIELDS,

:maximum => DB_STRING_MAX_LENGTH

validates_inclusion_of :gender,

 :in => VALID_GENDERS,
 :allow_nil => true,
 :message => "must be male or female"

 validates_inclusion_of :birthdate,
 :in => VALID_DATES,
 :allow_nil => true,
 :message => "is invalid"

 validates_format_of :zip_code, :with => /(^$|^[0-9]{#{ZIP_CODE_LENGTH}}$)/,
 :message => "must be a five digit number"
end

As with the User model, the Spec model contains several constants associated with the
attributes of the model, together with validations for those attributes. The first constant,
ALL_FIELDS is a list of all the attributes that we will allow the user to edit. The next constant
is an array of strings specifying which fields are strings whose length should be validated.
We then have a constant for all of the valid genders; we use the strings "Male" and
"Female" to indicate the user's gender. We then define a couple of constants for validating
birthdates; the second, VALID_DATES, creates a range of DateTime objects defining valid
birthdates. Finally, we bind a name to the number of digits in a zip code[2].

[2] This may seem like overkill, but the descriptive model constant looks good in the tests and views, and it gives us the flexibility to add, for example, a four-digit extension
at some point.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 322 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

We should note that we didn't put all these constants in right away; we discovered the need
for them as we wrote our views and tests, adding them one by one. As we discovered in the
case of the User model, class constants are a convenient way to collect information specific
to the model for use elsewhere in the application. It's not a bad idea to include some class
constants preemptively, which we will probably do for future models, or you can rely on
adding them as the need arises, but in any case we warmly recommend their use.
Although we have some experience with models and validations through the User model,
several aspects of the Spec model deserve some amplification. Note first that
validates_length_of can take an array of strings as its first argument, validating the
length of each one in turn. Since we don't have any particular reason to restrict the length
of the first name, last name, or occupation, we've simply used the maximum length allowed
by the database string type. This, in turn, uses the constant DB_STRING_MAX_LENGTH,
which we could define in the Spec model, but since we know it will be useful to other models,
we'll put in config/environment.rb and it will be globally accessible:
file: config/environment.rb

.

.

.

Include your application configuration below

DB_STRING_MAX_LENGTH = 255

There's a new validation, validates_inclusion_of, which simply verifies that the given
field is in a particular list or range of valid options. Note in particular how smart Ruby is it
comparing different kinds of objects; even though our birthdate is a string, Ruby knows
how to make sure that it's in a valid range of DateTimes. Both genders and birthdates can
be blank and that is allowed easily since validates_inclusion_of takes an
option :allows_nil to handle precisely this case.
The last validation uses validates_format_of to check the zip code format (which we
saw for the first time in Section 3.2.5 in the context of screen name and email format
validations). The only tricky thing here is the regular expression used for zip code validation;
it matches either an empty zip code or a sequence of digits of length ZIP_CODE_LENGTH.
Let's open up an irb session to see how it works:

> irb

irb(main):001:0> ZIP_CODE_LENGTH = 5

=> 5

irb(main):002:0> pattern = /(^$|^[0-9]{#{ZIP_CODE_LENGTH}}$)/

=> /(^$|^[0-9]{5}$)/

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 323 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

irb(main):003:0> "" = pattern

=> 0

irb(main):004:0> "91125" = pattern

=> 0

irb(main):005:0> "911250" = pattern

=> nil

irb(main):006:0> "fubar" = pattern

=> nil

After defining the relevant zip code constant, first we replicate the pattern used in the
validation; notice in particular that variable interpolation works in regular expressions. Then
we use the = syntax (borrowed from Perl) to test for a regular expression match, showing a
few examples of successful and unsuccessful matches. (By now, you've no doubt gotten used
to nil being false; it's essential in this context also to recall that 0 is true, since that's
what irb returns for successful match.)

9.2.3. Tying Models Together
With the class constants and validations, we are very nearly done with our new Spec model.
We've encountered class constants and validations before in the context of the User model,
of course, but for the purposes of registration and authentication the User model could stand
on its own. In contrast, now we have two models that are related in a specific way: each user
has one spec, and each spec belongs to a user. Let's tell that to Rails.
If you've done much web programming before, it's likely you've tied databases together
either by the get-id-write-SQL-to-get-user-related-table-row idiom or by joining one or more
tables by common id. With Rails, it's the first approach, but it's also completely hidden behind
the scenes. In Rails all we do is use the "dot-syntax":

@user.spec

to reference the spec for a particular user using a User object. Active Record lets us do this
as long as three conditions are met:

1. The specs table has a column identifying its corresponding user
2. The User class declares that each user has one spec
3. The Spec class declares that each spec belongs to a user

We've already met the first of these requirements by including a user_id column in the
specs table (Section 9.2.1). The second and third requirements simply involve adding a
couple of lines to our models. First, we tell Rails that each user has one spec:
file: app/models/user.rb

class User < ActiveRecord::Base

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 324 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

has_one :spec

.

.

.

end

Next, we tell Rails that each spec belongs to a user:
file: app/models/spec.rb

class Spec < ActiveRecord::Base

belongs_to :user

.

.

.

end

By implementing these three simple steps, we allow Rails to perform all kinds of wonderful
magic. For example, if a user already has a spec, we can use

@user.spec

to gain access to it. If there is no spec, we can write something like

@user.spec = Spec.new

some manipulations creating a valid spec

@user.save

and automatically create an entry in the specs table corresponding to the proper user (as
identified by the user id).
This is all a bit abstract, so let's move on to editing user specs for some concrete examples
of data model associations.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 325 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

9.3. Editing the User Specs
Our method for editing user specs parallels the screen name, email, and password editing
forms and actions from Chapter 8. As before, we'll use the standard Rails way of manipulating
a model using a form, as well as some fairly slick embedded Ruby.
As with previous forms, the view for editing specs uses form_for to build up a form for
editing a Spec model object. It introduces a couple of new helper functions, as well as a
custom-built helper to capture a recurring pattern in our forms.

9.3.1. Spec Controller
Since we'll be handling requests from the browser in order to edit the spec, naturally enough
we need a Spec controller:

> ruby script/generate controller Spec index edit

exists app/controllers/

exists app/helpers/

create app/views/spec

exists test/functional/

create app/controllers/spec_controller.rb

create test/functional/spec_controller_test.rb

create app/helpers/spec_helper.rb

create app/views/spec/index.rhtml

create app/views/spec/edit.rhtml

Although the index action isn't strictly necessary (in fact, we will just forward it to the user
index), we like the idea that every controller has some default action.
In addition to the rather trivial index action, we'll also include the slightly less trivial edit
action. Like many of the actions in the User controller, edit uses the param_posted?
function to test for the proper posted parameter, but first we have to make this function
available to the Spec controller. Since param_posted? is generally useful, we'll put it in the
Application controller so that it will be available to all our controllers:
file: app/controllers/application.rb

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 326 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

class ApplicationController < ActionController::Base

.

.

.

Return true if a parameter corresponding to the given symbol was posted.

def param_posted?(sym)

request.post? and params[sym]

end

end

For the most part, the spec edit action parallels the edit action in the User controller from
Section 8.2:
file: app/controllers/spec_controller.rb

class SpecController < ApplicationController

def index

redirect_to :controller => "user", :action => "index"

end

Edit the user's spec.

def edit

@title = "Edit Spec"

@user = User.find(session[:user_id])

@user.spec ||= Spec.new

@spec = @user.spec

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 327 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

if param_posted?(:spec)

if @user.spec.update_attributes(params[:spec])

flash[:notice] = "Changes saved."

redirect_to :controller => "user", :action => "index"

end

end

end

end

The first two lines are familiar: we give the spec edit page a title and then find the user in the
database using the user id in the session using the same User.find method that we first
encountered in Section 8.2[3]. The third line is the key piece of new material: it assigns a new
spec object to @user.spec, unless the user already has a spec, in which case it does nothing.
It uses the rather obscure yet entirely logical operator ||= to accomplish this task (see box).

[3] If you're worried about what happens if no user is logged in, you're ahead of the game; see Section 9.3.4.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 328 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

What the &*!@ is ||= ?

The first time I (Michael) saw ||= (read "or-equals"), I said "Huh?" The second time
I saw it, I'd forgotten that I'd seen it once before, and I said "<head explodes>". But,
upon further reflection, I realized that it actually makes a lot of sense.
A common operation when programming is incrementing a variable by a
particular quantity, as in

foo = foo + bar

Many languages (including Ruby) provide a syntactic shortcut for this:

foo += bar

Sometimes, we want a variable to keep its current value, unless it's nil, in which
case we want to give it some other value. For example, we might want to assign
to a user spec either the current spec (if there is one) or a new one. Using the short-
circuit property of the || operator, we might write this as follows:

@user.spec = @user.spec || Spec.new

But this is just the foo = foo + bar pattern with || in place of +. In analogy
with the += construction, we can therefore write

@user.spec ||= Spec.new

Voilà!

The rest of the function is also important. The edit view needs an @spec variable since it
contains the same kind of form_for that we've used before to manipulate the User model.
Then, if the form is posted with a :spec element in params, we update the user spec
attributes with the parameters from the form:

@user.spec.update_attributes(params[:spec])

This line contains some magic made possible by our efforts in Section 9.2.3 to tie the Spec
and User models together. Based on the id of the user, Active Record knows to update the
corresponding row in the specs table. We never have to worry about the association
between the two tables explicitly; Active Record does the hard work for us.

9.3.2. An HTML Utility
In order to simplify the spec edit view, we'll define a custom function called
text_field_for, which makes a text field based on the form object and the name of the
field. Its purpose is to generate HTML of the form

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 329 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<div class="form_row">

<label for="last_name">Last name</label>

<input id="spec_last_name" maxlength="255" name="spec[last_name]" size="15"

type="text" value="Bar" />

</div>

using code like

<%= text_field_for form, "Last name" %>

This effectively captures the pattern that we've used previously where the content of the
label is the humanized version of the field name and the input tag is generated by
form.text_field.
The text_field_for could be defined in the Spec helper, but we expect that it will be
useful in many different views, so we'll define it in the Application helper where it will be
available to our entire application:
file: app/helpers/application_helper.rb

.

.

.

def text_field_for(form, field,

size=HTML_TEXT_FIELD_SIZE,

maxlength=DB_STRING_MAX_LENGTH)

label = content_tag("label", "#{field.humanize}:", :for => field)

form_field = form.text_field field, :size => size, :maxlength => maxlength

content_tag("div", "#{label} #{form_field}", :class => "form_row")

end

.

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 330 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

This uses the Rails content_tag function to form the relevant tags, rather than explicitly
using strings such as "<label>". This way, we never have to worry about closing our tags,
since content_tag does it for us. We're not naming names, but we've seen quite a lot of
Ruby-generated HTML with hard-coded tag names out there, which is ugly and error-prone;
we suggest always using content_tag or the related tag function rather than explicit tag
strings when using Ruby to make HTML[4].

[4] See also Builder::XmlMarkup in the Rails API for a general approach that works for arbitrary XML structures.

To get text_field_for to work, you'll have to define HTML_TEXT_FIELD_SIZE, which
is a global constant for the default size of an HTML text field. As with
DB_STRING_MAX_LENGTH (Section 9.2.2), HTML_TEXT_FIELD_SIZE is defined in
environment.rb:
file: config/environment.rb

.

.

.

Include your application configuration below

DB_STRING_MAX_LENGTH = 255

HTML_TEXT_FIELD_SIZE = 15

(The value 15 is somewhat arbitrary, and you're free to choose a different value; its
arbitrariness is all the more reason to have a global constant, since we may very well decide
that, say, 25 is a more reasonable value.)
Before moving on, you'll have to restart the development server to load the new environment
settings.
The text_field_for helper function is like a partial, but unlike a partial it is defined
entirely in Ruby instead of rhtml. This allows us to use default arguments and generally handle
multiple arguments more elegantly than partials, which have a somewhat cumbersome
mechanism for passing local variables. Choosing between a partial or a Ruby function to
eliminate duplicate HTML is a matter of judgment; in this case using Ruby seems more natural.

9.3.3. The Spec Edit View
With the text_field_for function in hand, the spec edit form is relatively straightforward,
apart from a couple of new Rails helpers:
file: app/views/spec/edit.rhtml

<% form_for :spec do |form| %>

<fieldset>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 331 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<legend><%= @title %></legend>

<%= error_messages_for 'spec' %>

<%= text_field_for form, "first_name" %>

<%= text_field_for form, "last_name" %>

<div class="form_row">

<label for="gender">Gender:</label>

<%= radio_button :spec, :gender, "Male" %> Male

<%= radio_button :spec, :gender, "Female" %> Female

</div>

<div class="form_row">

<label for="birthdate">Birthdate:</label>

<%= date_select :spec, :birthdate,

:start_year => Spec::START_YEAR,

:end_year => Time.now.year,

:include_blank => true,

:order => [:month, :day, :year] %>

</div>

<%= text_field_for form, "occupation" %>

<%= text_field_for form, "city" %>

<%= text_field_for form, "state" %>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 332 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<%= text_field_for form, "zip_code", Spec::ZIP_CODE_LENGTH %>

<%= submit_tag "Update", :class => "submit" %>

</fieldset>

<% end %>

The page resulting from this view shown in Fig. 9.3.

Figure 9.3. Editing Foo Bar's spec.

[View full size image]

The spec edit introduces a couple of new Rails form helpers, the radio_button and
date_select functions. Like the other form helpers, these functions both take symbols
representing the type of object to be manipulated (in this case, a spec) and the attribute to
be modified (either the gender or the birthdate). The date_select function is particularly
clever; enter an invalid birthdate and take a look at the params variable if you're curious
about the implementation (Fig. 9.4).

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 333 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyZWR0X3BnYXNocDlfYy9fZWNzXy50bGppcDNp

Figure 9.4. Exposing the date select implementation by way of posting an invalid date (a date that was in the future when this
book was written).

[View full size image]

9.3.4. Protecting Specs
The ability to view and edit specs should be available only to logged-in users of RailsSpace,
so we should protect the actions in the Spec controller from unauthorized access. Of course,
we developed the machinery to do this in Section 6.4.2 by defining a protect function and
using the Rails before_filter feature. Since we want to be able to protect functions in
both the User controller and the Spec controller (as well as any other controllers we create),
we will move the protect function from the User controller to the Application controller,
and add an explicit reference to the User controller in the redirect so it still goes to the login
page:
file: app/controllers/application.rb

.

.

.

Protect a page from unauthorized access.

def protect

unless logged_in?

session[:protected_page] = request.request_uri

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 334 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyZGFobnBwZWlzaWg5X2MvX3J0Yl9sZXRtZXRtYTRpdF9naWxqbmF0cC5v

flash[:notice] = "Please log in first"

redirect_to :controller => "user", :action => "login"

return false

end

end

.

.

.

Next, add a before filter to the Spec controller:
file: app/controllers/spec_controller.rb

class SpecController < ApplicationController

before_filter :protect

.

.

.

end

Now, all of the actions in the Spec controller will require a user login.

9.3.5. Testing Specs
Of course, we would be remiss not to test our spec functionality. The full listing for both the
spec functional and unit tests can be downloaded at http://RailsSpace.com/book/; we list
below a couple of the tests and comment on some of their novel features.
Perhaps the most important thing to test is a successful edit. As in our previous test for login
and register, we post information to the edit action and then check to see that the
appropriate steps were taken:
file: test/functional/spec_controller_test.rb

require File.dirname(__FILE__) + '/../test_helper'

require 'spec_controller'

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 335 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://RailsSpace.com/book/

Re-raise errors caught by the controller.

class SpecController; def rescue_action(e) raise e end; end

class SpecControllerTest < Test::Unit::TestCase

fixtures :users

fixtures :specs

 def setup
 @controller = SpecController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 @user = users(:valid_user)
 @spec = specs(:valid_spec)
 end

 .
 .
 .

 def test_edit_success
 authorize @user
 post :edit,
 :spec => { :first_name => "new first name",
 :last_name => "new last name",
 :gender => "Male",
 :occupation => "new job",
 :zip_code => "91125" }
 spec = assigns(:spec)
 new_user = User.find(spec.user.id)
 assert_equal new_user.spec, spec
 assert_equal "Changes saved.", flash[:notice]
 assert_response :redirect
 assert_redirected_to :controller => "user", :action => "index"
 end

 .
 .
 .

end

Don't try to run this test just yet; first we neet to explain what's going on here. The main
novelty is the use of the @spec variable defined by the action to access the user id[5]:''

[5] Recall that assigns looks for an instance variable in the corresponding action, so assigns(:spec) looks for a variable @spec in the action.

spec = assigns(:spec) new_user = User.find(spec.user.id)

We've seen before how we can access a user spec through an expression such as
user.spec; here we see the complementary ability to access a user through a spec object
[6]. One other aspect of test_edit_success deserves note: the authorize function,

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 336 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

which previously lived in the User controller test (Section 6.3.2), has been moved to the test
helper so that it can be used by multiple controllers:

[6] Of course, in this case we could also use spec.user_id.

file: test/test_helper.rb
Authorize a user.

def authorize(user)

@request.session[:user_id] = user.id

end

We're now in a position to appreciate the necessity of the authorize function, in addition
to the try_to_login function: since functional tests can only call actions in the controller
they test, we need an authorization function that works independently of the login action
(which is only accessible when testing the User controller).
Now, to run the test, you'll need to edit the Spec YAML file:
file: test/fixtures/specs.yml

Read about fixtures at http://ar.rubyonrails.org/classes/Fixtures.html

valid_spec:

id: 1

user_id: 1

first_name: Kip

last_name: Thorne

gender: Male

birthdate: 1940-06-01

occupation: Feynman Professor of Theoretical Physics

city: Pasadena

state: CA

zip_code: 91125

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 337 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

blank_spec:

id: 2

user_id: 2

Once you prepare the test database, you'll be good to go:

> rake db:test:prepare

(in /rails/rails_space)

> ruby test/functional/spec_controller_test.rb
Loaded suite test/functional/spec_controller_test -n test_edit_success
Started
.
Finished in 0.288183 seconds.

1 tests, 4 assertions, 0 failures, 0 errors

As with the Spec controller tests, the full Spec model tests can be downloaded from the
RailsSpace website, but one test in particular deserves to be highlighted:
file: test/unit/spec_test.rb

Test a saving a blank spec.

def test_blank

blank = Spec.new

assert blank.save, blank.errors.full_messages.join("\n")

end

This effectively tests the attributes whose default values are supposed to be the empty string
"" (Section 9.2.1). The reason we mention this test specifically is because the error messages
are very confusing if you forget to put that the default value in the migration. In that case,
the attributes for a new spec object would be nil rather than blank. Our test would then fail
as follows:

> ruby test/unit/spec_test.rb -n test_blank

Loaded suite test/unit/spec_test

Started

F

Finished in 0.48 seconds.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 338 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1) Failure:

test_blank(SpecTest) [test/unit/spec_test.rb:19]:

City is too long (maximum is 255 characters)

State is too long (maximum is 255 characters)

Occupation is too long (maximum is 255 characters)

First name is too long (maximum is 255 characters)

Last name is too long (maximum is 255 characters).

<false> is not true.

1 tests, 1 assertions, 1 failures, 0 errors

If these error messages seem confusing in a test result, imagine how perplexing they would
be coming back to a user on the RailsSpace site. How can a blank (that is to say, nil) first
name possibly be too long? The answer is, it isn't too long, but our validation requires finding,
e.g., first_name.length, which raises an exception when first_name is nil.
Unfortunately, Rails interprets this as a failure, and reports that the corresponding attribute
is too long. Since that is confusing, it's important to have a test for it.
Of course, with the proper migration, the test passes:

> ruby test/unit/spec_test.rb -n test_blank

Loaded suite test/unit/spec_test

Started

.

Finished in 0.57 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

9.4. Updating the User Hub
Now that we have an editable Spec model, it's time to update the user hub with information
from the spec. Recall (Section 4.3.3) that the user hub lives at the index action of the User
controller. All we need to do in the action is to create a user spec using the same ||=
construction that we used in Section 9.3.1:
file: app/controllers/user_controller.rb

def index

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 339 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

@title = "RailsSpace User Hub"

@user = User.find(session[:user_id])

@user.spec ||= Spec.new

@spec = @user.spec

end

We've also created a spec instance variable for use in the hub view.
In preparation for displaying the user's full name and location, we'll add a couple functions
in the Spec model:
file: app/models/spec.rb

class Spec < ActiveRecord::Base

.

.

.

Return the full name (first plus last)

def full_name

[first_name, last_name].join(" ")

end

Return a sensibly formatted location string.

def location

[city, state, zip_code].join(" ")

end

end

Both the full name and the location use the join method to join array elements together
separated by a particular string (in this case, a space).

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 340 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

9.4.1. The New Hub View
We're now ready to make the updated user hub. First we have to make a couple of minor
changes to the global layout file application.rhtml by including the profile stylesheet
and adding a <br clear="all" /> to reset any float alignments defined in the yielded
content:
file: app/views/layouts/application.rhtml

.

.

.

<title><%= @title %></title>

<%= stylesheet_link_tag "site" %>

<%= stylesheet_link_tag "profile" %>

.

.

.

<%= yield %>

<br clear="all" />

.

.

.

Then add the following styles to the profile stylesheet:
file: public/stylesheets/profile.css

/* Profile Styles */

td.label {

text-align: right;

font-weight: bold;

white-space: nowrap;

}

input {

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 341 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

font-family: Arial, Helvetica, sans-serif;

}

.edit_link a {

text-decoration: none;

color: blue;

}

#left_column {

float: left;

width: 300px;

}

#main_content {

margin-left: 320px;

}

.sidebar_box {

background-color: #ddd;

border: 1px solid #aaa;

font-size: 12px;

margin-bottom: 10px;

}

.sidebar_box h2 {

margin-top: 0px;

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 342 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

padding: 6px;

background-color: #ccc;

font-size: 13px;

color: maroon;

font-weight:bold;

}

.sidebar_box p {

padding-left: 6px;

padding-right: 6px;

}

.sidebar_box .header {

float: left;

}

.sidebar_box .edit_link {
 float: right;
}

With these changes, the updated hub view appears as follows:
file: app/views/user/index.rhtml

<h1>User Hub</h1>

<div id="left_column">

<div class="sidebar_box">

<h2>

Basic User Info

<%= link_to "(edit)", :action => "edit" %>

<br clear="all" />

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 343 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

</h2>

<div class="sidebar_box_contents">

<table>

<tr>

<td class="label">Screen name:</td>

<td><%= @user.screen_name %></td>

</tr>

<tr>

<td class="label">Email:</td>

<td><%= @user.email %></td>

</tr>

<tr>

<td class="label">Password:</td>

<td>********</td>

</tr>

</table>

</div>

</div>

</div>

<div id="main_content">

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 344 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Empty right column, for now.

</div>

Here we've introduced a two-column format, with the left column starting off with the basic
user information. The result appears in Fig. 9.5.

Figure 9.5. The updated user hub with user info moved into a sidebar.

[View full size image]

9.4.2. A Spec Box
The user info piece is completely straightforward, but the next section, user spec, is a little
bit trickier:
file: app/views/user/index.rhtml

.

.

.

<div class="sidebar_box">

<h2>

Spec

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 345 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyaXR3ZmlwbmFzdWg5X2MvX2JfaGJjX29zX2hpXzVpZ3NiLmlscmVhal9wdGFk

<%= link_to "(edit)", :controller => "spec", :action => "edit" %>

<br clear="all" />

</h2>

<div class="sidebar_box_contents">

<table>

<%= render :partial => "spec/field_row",

:collection => Spec::ALL_FIELDS %>

</table>

</div>

</div>

</div>

<div id="main_content">

.

.

.

This section uses a partial to render the spec fields:
file: app/views/spec/_field_row.rhtml

<tr>

<td class="label"><%= field_row.humanize %>:</td>

<td><%= h @user.spec[field_row] %></td>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 346 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

</tr>

Note that we use the humanize function (which we first met in Section 8.5.2) to label each
field.
Since the Spec model has a constant ALL_FIELDS containing the names of all the attributes
we want to list, you might have expected code such as

<% Spec::ALL_FIELDS.each do |field| %>

<%= render :partial => "spec/field_row"

:locals => { :field_row => field } %>

<% end %>

Rails partials are clever enough to anticipate this situation through the :collection
option, which allows this pithier code:

<%= render :partial => "spec/field_row",

:collection => Spec::ALL_FIELDS %>

If you're wondering how the partial knows how to assign the proper value to field_row,
the answer is that it gets it from the filename. In other words, passing a collection to a file
called _field_row.rhtml automatically invokes that partial with a local variable called
field_row for each element in the collection.
The partial itself contains a couple of tricks. First, Active Record allows us to access an attribute
using a hash-like notation as well as the traditional Ruby dot syntax; for example,

@user.spec["first_name"]

is the same as

@user.spec.first_name

This is particularly convenient when we have a variable (such as field_row) that contains
a string with the attribute name; instead of having to hard-code each object attribute, we
can use a variable instead[7].

[7] We could achieve this same result with pure Ruby using the more general but somewhat less clear syntax @user.spec.send(field_row).

The second trick is the letter h. This is the minimalist Rails function for HTML escape, which
replaces HTML tags with their escaped versions (e.g., < for <). Though there would be
little harm in allowing our users to put their names in boldface or make their occupations
italicized, displaying arbitrary text on a web page is a Bad Thing, and would open up
RailsSpace to a cross-site scripting (XSS) attack through the inclusion of malicious tags, forms,
or JavaScript. (Of course, escaping text in this way also prevents the use of any HTML tags,
which is fine for short fields such as those in the spec, but it might be a little heavy-handed

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 347 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

for the text fields we'll find in other parts of the profile. To allow most HTML tags while
disabling the most dangerous elements, use the sanitize function in place of h; see Section
9.5.4.)
Fig. 9.6 shows the user hub after adding the spec sidebar.

Figure 9.6. The updated user hub with spec sidebar.

[View full size image]

9.4.3. Named Routes and the Profile URL
One important element on the user hub will be a link to the user's public profile, as identified
by screen name. We could code this directly using something like

<%= link_to "http://RailsSpace.com/profile/#{@user.screen_name}",

"/profile/#{@user.screen_name}" %>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 348 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyaXR3ZWNwZHBzdWg5X2MvX2JfaHNfX2Jlc2hpYTZpcnRfai5scGdh

This would work, but it feels like we're repeating ourselves a bit, and it's not robust against
changes in the URL routing rules. The preferred Rails way to handle this is to use a technique
called named routes.
Recall from Section 9.1.1 that we created a special routing rule for user profiles:
file: config/routes.rb

map.connect 'profile/:screen_name', :controller => 'profile', :action => 'show'

To take advantage of named routes, all we need to do is change map.connect to
map.profile:

map.profile 'profile/:screen_name', :controller => 'profile', :action => 'show'

This change automatically creates a URL function called profile_url, which in our case
takes the screen name as an argument. In other words,

profile_url(:screen_name => 'foobar')

automatically connects to

/profile/foobar

With our newly rerouted profile URL, we can link to the profile URL with profile_url:

<%= link_to profile_url(:screen_name => @user.screen_name),

profile_url(:screen_name => @user.screen_name) %>

This is still a bit verbose for our taste, so we'll make a helper function for it:file:

app/helpers/profile_helper.rb

module ProfileHelper

Return the user's profile URL.

def profile_for(user)

profile_url(:screen_name => user.screen_name)

end

end

This will allow us to write the user's profile URL as

<%= link_to profile_for(@user), profile_for(@user) %>

We'll make good use of this in the next section.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 349 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Note that we've put the profile_for in the Profile helper file. So far in RailsSpace, we've
put all helpers functions in the global Application helper file, which is convenient but can
become rather cumbersome. Given the large number of helpers that we'll be adding
throughout the rest of this book, we'll mainly put helper functions in the controller-specific
helper files (such as profile_helper.rb). The cost of this is having to include the helper
in every controller that uses any of the functions. In this case, we'll be putting the profile URL
on the user hub, so we have to tell the User controller:

class UserController < ApplicationController

include ApplicationHelper

helper :profile

before_filter :protect, :only => [:index, :edit, :edit_password]

.

.

.

end

Here we've used the helper function, which takes in a symbol corresponding to the name
of the helper file. We could have written include ProfileHelper instead, but the effect
is slightly different;

helper :profile

makes the Profile helper functions available only in the views of the User controller. In
contrast,

include ProfileHelper

includes the helper functions into both the views and the controller itself. This distinction
will be important when we want to use helper functions in controllers.

9.4.4. The Hub Main Content
Now that we've finished the machinery needed to display the RailsSpace profile URL, we need
to decide what to do with the user's name, occupation, and location. Since these attributes
are optional aspects of the user spec, will should have sensible defaults in case the user leaves
them blank. For example, we would like to display Your Name if the user decides not to fill
in the first or last name fields. We'll accomplish this using the or_else function, which we
will discuss momentarily:

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 350 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

file: app/views/user/index.rhtml
.

.

.

<div id="main_content">

<div id="full_name">

<%= h @spec.full_name.or_else("Your Name") %>

</div>

<div id="occupation">

<%= h @spec.occupation.or_else("Your Occupation") %>

</div>

<div id="location">

<%= h @spec.location.or_else("Your Location") %>

</div>

<%= link_to "(edit)", :controller => "spec", :action => "edit" %>

<hr noshade />

Profile URL: <%= link_to profile_for(@user), profile_for(@user) %>

<hr noshade />

My Bio:

</div>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 351 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

This needs just a few more styles:
file: public/stylesheets/profile.css

.

.

.

/* Spec Style */

#full_name {

font-size: xx-large;

}

#occupation{

font-size: x-large;

}

#location {

font-size: large;

}

Note that we've left space for the bio, which we'll fill in starting in Section 9.5. We've also
linked in the profile URL, as promised in the previous section.
The rhtml for the main content is straightforward except for the or_else function, which
returns an alternate value if the string it's called on is blank. This allows us to accomplish our
goal of having a placeholders for the user information (e.g., Your Name if
@spec.full_name is blank).
We've seen something similar to this several times before, most recently in Section 8.5.2 (the
password field partial), where we used the construction

field_title || field.humanize

to display the field title if field_title is not nil, or else display the humanized version
of the field. In the case of a blank string, this won't work, though, since a blank string such as
" " evaluates to true in a boolean context. What we want is a function, which we call
or_else, that enables the following syntax:

first_name.or_else("Your Name")

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 352 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

We'll follow the Ruby Way by writing the or_else function as a String method. Recall
from the box in Section 7.1 that Ruby lets us open the String class itself to add such a
method. The traditional Rails location for such a generic library function is in the lib
directory, so we'll put our new string method there:
file: lib/string.rb

class String

Return an alternate string if blank.

def or_else(alternate)

blank? ? alternate : self

end

end

Note that or_else uses the blank? method, which returns true for any string that is
empty (so that empty? is true) or consists only of white space. blank? is not part of Ruby,
but rather is added to the String class by Rails in much the same way that we have added
or_else. The blank? method is apparently undocumented (at least, we couldn't find it in
the API), and before discovering this we actually added our own blank? function with
exactly the same behavior as the one used by Rails; we then forgot to require the updated
string class in any of our helpers. You can imagine our confusion when Rails was unable to
locate the or_else function—after all, the blank? function worked fine!
To use the or_else method with the strings in our application, we have to require the string
class in one of our helpers; we'll use the Application helper:
file: app/helpers/application_helper.rb

module ApplicationHelper

require 'string'

.

.

.

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 353 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

It's important to note that files located in the lib/ directory are only loaded once, when you
start your server. In order to get the updated user hub to work, you will therefore have to
restart your local webserver.
Once you've added the or_else function to the String class and restarted the server, the
user have appears as in Fig. 9.7.

Figure 9.7. The user hub with the right column starting to get filled in.

[View full size image]

9.5. Personal FAQ: Interests and Personality
In the spirit of a technical specification, the user spec only contains a minimal amount of
information. In this section we'll implicitly ask and explicitly answer Frequently Asked
Questions for our users. These will simply be categories such as the user bio, computer (and
other) skills, and favorite movies, music, television shows, etc. The FAQ will be freer-form than
the spec; the answer for each category will simply be a block of text that the user is free to
edit.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 354 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyaXR3bGhwb2lzdWg5X2MvX2JfaHJ0X3VnX2hjbTdpbnRfai5scGdh

9.5.1. The FAQ Model
By now you should be expecting the first step, which is to generate a model for the FAQ:

> ruby script/generate model Faq

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/faq.rb

create test/unit/faq_test.rb

create test/fixtures/faqs.yml

exists db/migrate

create db/migrate/006_create_faqs.rb

Note that we use a model called Faq since Rails converts FAQ to Faq anyway, which is a
minor limitation of the CamelCase-camel_case convention used by Rails. We're not going
to swim upstream against the Rails convention, so we'll keep Faq, but we will continue to
use FAQ in our discussion.
The next step is to edit the migration file and add some FAQ categories as text fields:
file: db/migrate/006_create_specs.rb

class CreateFaqs < ActiveRecord::Migration

def self.up

create_table :faqs do |t|

t.column :user_id, :integer, :null => false

t.column :bio, :text

t.column :skillz, :text

t.column :schools, :text

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 355 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

t.column :companies, :text

t.column :music, :text

t.column :movies, :text

t.column :television, :text

t.column :magazines, :text

t.column :books, :text

end

end

def self.down

drop_table :faqs

end

end

Run migrate (which should be starting to become second nature). The case of the spec, we
supplied the default of "" for several of the fields, but that doesn't work here: MySQL doesn't
allow default values for columns of type TEXT[8]. We still want the default values for these
fields to be blank, of course; that's no problem, since we can use Ruby to do it in the FAQ
model.

[8] See http://dev.mysql.com/doc/refman/5.0/en/blob.html.

The FAQ model itself is quite short, but it nevertheless has a couple of things we haven't seen
before. We'll start with the familiar territory: like a spec, a FAQ belongs to a user, so we use
the belongs_to :user declaration to tell that to Rails. We also define a few model
constants and add a single, simple validation, which just make sure that the submitted text
isn't to absurdly huge:
file: app/models/faq.rb

class Faq < ActiveRecord::Base

belongs_to :user

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 356 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://dev.mysql.com/doc/refman/5.0/en/blob.html

QUESTIONS = %w(bio skillz schools companies

music movies television books magazines)

A constant for everything except the bio

FAVORITES = QUESTIONS - %w(bio)

TEXT_ROWS = 10

TEXT_COLS = 40

validates_length_of QUESTIONS,

:maximum => DB_TEXT_MAX_LENGTH

def initialize

super

QUESTIONS.each do |question|

self[question] = ""

end

end

end

Here the second model constant called FAVORITES separates the parts of the FAQ that are
likely to be simple lists so that they can be displayed differently from the bio. (We call it
"favorites" since most of them are lists of favorite things.) The final two constants get used
in the view to format the text area where users fill in their answers for the FAQ. The validation
uses a constant to find in the environment file:
file: config/environment.rb

Include your application configuration below

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 357 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

DB_STRING_MAX_LENGTH = 255

DB_TEXT_MAX_LENGTH = 40000

HTML_TEXT_FIELD_SIZE = 15

As usual, restart the development server to load the new environment settings.
The most significant new material in the FAQ model is the initialize function, which is
the general Ruby class initialization function. If the class has an initialize function, that
function will automatically be called every time we create a new instance of the class. If a
class inherits from another class, there is no need to define an initialize function since
the parents class's initialize function will be called automatically; since all our models
inherit from ActiveRecord::Base, so far we have always relied on the initialization
function in the parent class (also called the superclass). In the present case, though, we need
to define our own initialize, since we want to set the default text for each question to
"".
Looking at the text of initialize, we see that there are essentially two actions taken. The
second is the initialization we need, which uses the hash-style access to Active Record
attributes that we first met in Section 9.4:

def initialize

super

QUESTIONS.each do |question|

self[question] = ""

end

end

But what about the first line, super? Since we want the FAQ model to be a proper Active
Record class, we need to call the initialize function of the superclass; the command to do this
is simply super.
The second new piece of syntax is the definition of FAVORITES, which uses the Array
subtraction operator (in conjunction with the %w shortcut for creating string arrays):

> irb

irb(main):001:0> a = %w(foo bar bar baz quux)

=> ["foo", "bar", "bar", "baz", "quux"]

irb(main):002:0> b = %w(bar quux)

=> ["bar", "quux"]

irb(main):003:0> a - b

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 358 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

=> ["foo", "baz"]

As you can see, the operation a - b removes from a any element appearing in b.
Before moving on to the FAQ controller, there's just one change we need to make: we need
to tell Rails that a User has one FAQ:
file: app/models/user.rb

class User < ActiveRecord::Base

has_one :spec

has_one :faq

attr_accessor :remember_me

.

.

.

end

9.5.2. The FAQ Controller
So far, each of our models has gotten its own controller, and FAQ is no exception:

> ruby script/generate controller Faq index edit

exists app/controllers/

exists app/helpers/

create app/views/spec

exists test/functional/

create app/controllers/faq_controller.rb

create test/functional/faq_controller_test.rb

create app/helpers/faq_helper.rb

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 359 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

create app/views/faq/index.rhtml

create app/views/faq/edit.rhtml

We'll fill and the edit method shortly, but for now we'll put in a before filter to protect the
FAQ pages and redirect the FAQ index to the user hub:
file: app/controllers/faq_controller.rb

class FaqController < ApplicationController

before_filter :protect

def index

redirect_to hub_url

end

def edit

end

end

Here we redirect to hub_url, which requires that we create a named route (Section 9.4.3)
for the hub using map.hub:
file: config/routes.rb

map.hub 'user', :controller => 'user', :action => 'index'

For most pages on RailsSpace, making a named route isn't worth the trouble, but in this case
it's a good idea since we expect to redirect frequently to the user hub.

9.5.3. Editing the FAQ
Editing the user FAQ is scandalously easy with the use of Rails partials. The added function
is virtually identical to the form for the spec:
file: app/controllers/faq_controller.rb

Edit the user's FAQ.

def edit

@title = "Edit FAQ"

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 360 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

@user = User.find(session[:user_id])

@user.faq ||= Faq.new

@faq = @user.faq

if param_posted?(:faq)

if @user.faq.update_attributes(params[:faq])

flash[:notice] = "FAQ saved."

redirect_to hub_url

end

end

end

As before, we use form_for to build up the FAQ form:
file: app/views/faq/edit.rhtml

<h1>Frequently Asked Questions</h1>

<p>

Please answer some basic questions about yourself.

</p>

<% form_for :faq do |form| %>

<fieldset>

<legend>Update Your FAQ</legend>

<%= error_messages_for 'faq' %>

<%= render :partial => "answer_text_area", :collection => Faq::QUESTIONS,

:locals => { :form => form } %>

<br clear="all" />

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 361 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<%= submit_tag "Update All", :class => "submit" %>

</fieldset>

<% end %>

With the form text_area helper function, the partial is a snap:
file: app/views/faq/_answer_text_area.rhtml

<div class="faq">

<%= answer_text_area.humanize %>:

<%= submit_tag "Update", :align => "right" %>

<%= form.text_area answer_text_area, :rows => Faq::TEXT_ROWS,

:cols => Faq::TEXT_COLS %>

</div>

Then add the FAQ styles to the profile stylesheet:
file: public/stylesheets/profile.css

.

.

.

/* FAQ Style */

.faq {

float: left;

padding: 20px;

}

#bio {

padding: 10px;

}

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 362 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.sidebar_box_contents, .faq_answer {

padding: 0 10px 10px 10px;

}

.faq_answer textarea {
 width: 280px;
 background: #ff9;
}

(Not all of these are needed now, but we'll use them all shortly.)
The result appears in Fig. 9.8.

Figure 9.8. The FAQ edit page. Feel free to change the rows/cols to suit your style!

[View full size image]

9.5.4. Adding the FAQ to the Hub
Since we're using the user hub to display the editable profile, we should add the FAQ. The
first step is to add FAQ instance variables to the user index action:
file: app/controllers/user_controller.rb

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 363 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyZGllLnBsc2hhXzljL19xX2Zhal90dHBnOGk-

def index

@title = "RailsSpace User Hub"

@user = User.find(session[:user_id])

@user.spec ||= Spec.new

@spec = @user.spec

@user.faq ||= Faq.new

@faq = @user.faq

end

The two-variable definition pattern evident in this action is quite common, and each one can
be condensed into one line as follows:
file: app/controllers/user_controller.rb

def index

@title = "RailsSpace User Hub"

@user = User.find(session[:user_id])

@spec = @user.spec ||= Spec.new

@faq = @user.faq ||= Faq.new

end

This may look a little confusing at first, but it's straightforward if you read it from right to left
same way you would parse a multi-variable assignment like

a = b = c = 0

With the proper instance variables defined in the index action, we're now ready to update
the hub view. We'll put all the non-bio elements of the FAQ on the left side bar along with
the spec (Fig. 9.9), while putting the user bio in the main content area. With the
FAVORITES constant as defined in the FAQ model, adding the non-bio aspects of the FAQ
is as simple as rendering a partial with the collection Faq::FAVORITES:
file: app/views/user/index.rhtml

<div id="left_column">

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 364 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<div class="sidebar_box">

.

.

.

</div>

<div class="sidebar_box">

.

.

 .
 </div>
 <%= render :partial => 'faq/sidebar_box', :collection => Faq::FAVORITES %>
</div>
<div id="main_content">
 .
 .
 .
 <hr noshade />
 <%= link_to profile_for(@user), profile_for(@user) %>
 <hr noshade />

 My Bio:

 <%= link_to "(edit)", :controller => "faq", :action => "edit" %>

 <div id="bio" class="faq_answer">
 <%= sanitize @faq.bio %>
 </div>
</div>

Figure 9.9. The user hub updated with the FAQ.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 365 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyaXR3al9wLmFzdWg5X2MvX2JfaGZhX3BxbGh0Zzlp

The FAQ sidebar partial is relatively straightforward; the only new material is the use of the
sanitize function (which we also used in the bio section above):
file: app/views/faq/_sidebar_box.rhtml

<div class="sidebar_box">

<h2>

<%= link_to "(edit)", :controller => "faq", :action => "edit" %>

<%= sidebar_box.humanize %>

<br clear="all" />

</h2>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 366 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<div class="faq_answer">

<%= sanitize @faq[sidebar_box] %>

</div>

</div>

As in the case of the spec, we display each user response in its own div; unlike the spec,
which used the Rails h to escape out the HTML, in this case we use the sanitize function
to disable potentially dangerous code like forms and JavaScript. The reason we don't escape
out the HTML in the FAQ is because we want to allow RailsSpace users to style their responses
using HTML if desired. (We expect that RailsSpace users will be among the most likely people
to know HTML well enough to style their own FAQ responses.) We can't allow arbitrary HTML,
though, since (as mentioned in Section 9.4.2) that would open a big security hole in
RailsSpace by allowing cross-site scripting (XSS) attacks[9].

[9] See, e.g., http://en.wikipedia.org/wiki/Cross_site_scripting.

9.5.5. FAQ Tests
As before, we have tests for the FAQ model and controller. We'd particularly like to highlight
the test of the maximum length validation for FAQs. The test_max_lengths a good
example of how test helper functions and model constants can combine to pack a ton of
productivity into a tiny test. First make a simple FAQ entry in the fixture file:
file: test/fixtures/faqs.yml

valid_faq:

id: 1

user_id: 1

bio: bio

skillz: skillz

schools: schools

companies: companies

music: music

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 367 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://en.wikipedia.org/wiki/Cross_site_scripting

movies: movies

television: tv

books: books

magazines: magazine

Then we can test the maximum length of each of the FAQ fields in one fell swoop using the
assert_length test helper from Section 8.4.3 and the model constant
Faq::QUESTIONS (together with the DB_TEXT_MAX_LENGTH constant from config/
environment.rb):
file: test/unit/faq_test.rb

require File.dirname(__FILE__) + '/../test_helper'

class FaqTest < Test::Unit::TestCase

fixtures :faqs

def setup

@valid_faq = faqs(:valid_faq)

end

def test_max_lengths

Faq::QUESTIONS.each do |question|

assert_length :max, @valid_faq, question, DB_TEXT_MAX_LENGTH

end

end

end

Running this gives

> rake db:test:prepare

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 368 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

(in /rails/rails_space)

> ruby test/unit/faq_test.rb

Loaded suite test/unit/faq_test

Started

.

Finished in 8.753472 seconds.

1 tests, 27 assertions, 0 failures, 0 errors

9.6. Public-Facing Profile
We've now given each user the ability to create a serviceable (if minimal) profile, so it's time
to fill in the show action and view (first defined in Section 9.1) to make the first cut of the
public-facing profile.
Since we already have ways to display the user's information, it would be wasted effort to
code to everything from scratch. If you look at the user hub (Fig. 9.9), you'll see that, apart
from the edit links, most of the display is suitable for use on the profile. This suggests
defining a boolean instance variable called @hide_edit_links in the show action to
indicate that those links should be suppressed:
file: app/controllers/profile_controller.rb

def show

@hide_edit_links = true

screen_name = params[:screen_name]

@user = User.find_by_screen_name(screen_name)

if @user

@title = "My RailsSpace Profile for #{screen_name}"

@spec = @user.spec ||= Spec.new

@faq = @user.faq ||= Faq.new

else

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 369 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

flash[:notice] = "No user #{screen_name} at RailsSpace!"

redirect_to :action => "index"

end

end

Lamentably, although Ruby allows function names to end in a question mark, the same is
not true for variable names, so we'll define a simple function in the Profile helper so that we
can continue the convention of ending all boolean things with ?:
file: app/helpers/profile_helper.rb

module ProfileHelper

.

.

.

Return true if hiding the edit links for spec, FAQ, etc.

def hide_edit_links?

not @hide_edit_links.nil?

end

end

By the way, the reason hide_edit_links? works in general is that instance variables are
nil if not defined, so the function returns false unless @hide_edit_links is set
explicitly.
Since it reuses the HTML layout and partial code from the user hub, the corresponding view
is simple:
file: app/view/profile/show.rhtml

<div id="left_column">

<%= render :partial => 'faq/sidebar_box', :collection => Faq::FAVORITES %>

</div>

<div id="main_content">

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 370 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<div id="full_name">

<%= h @spec.full_name.or_else(@user.screen_name) %>

</div>

<div id="occupation">

<%= h @spec.occupation %>

</div>

<div id="location">

<%= h @spec.location %>

</div>

<hr noshade />

Bio:

<div id="bio">

<%= sanitize @faq.bio %>

</div>

</div>

The only trick is the use of hide_edit_links? to hide the edit links on the FAQ side bar:
file: app/views/faq/_sidebar_box.rhtml

<div class="sidebar_box">

<h2>

<% unless hide_edit_links? %>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 371 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<%= link_to "(edit)", :controller => "faq", :action => "edit" %>

<% end %>

<%= sidebar_box.humanize %>

<br clear="all">

</h2>

<div class="faq_answer">

<%= sanitize @faq[sidebar_box] %>

</div>

</div>

With this, the basic user profile is complete (Fig. 9.10).

Figure 9.10. Foo Bar's public-facing profile.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 372 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyaWxmLnBsc2hwMDljL19yb19hal90ZXBnMWk-

10. Community

Giving users the ability to create and edit profiles is a good start, but for RailsSpace to be
useful to its members we need to have ways for them to find each other. In this chapter and
the next we develop three methods for finding users: a simple index by name; browsing by
age, sex, and location; and full-text searches through all user information, including specs
and FAQs.
In this chapter, we'll populate the RailsSpace development database with sample users so
that our various attempts to find users will not be in vain. Then we'll develop a community
(alphabetical) index to list RailsSpace members in the simplest way possible. Though
straightforward, the community index will introduce several new aspects of Rails, including
results pagination and a demonstration of the find function's remarkable versatility.

10.1. Building a Community (Controller)
So far, we've determined that finding users will involve an index as well as the capability to
browse and search for users. Now, "browse" and "search" are verbs, which suggests that they

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 373 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

should be actions inside of a controller. We'd like to continue the convention of using nouns
for controller names, so we need an appropriate collective noun to describe the set of users
that can be browsed and searched. Since our search functions take place within the context
of a community of users, let's create a Community controller:

> ruby script/generate controller Community index browse search

exists app/controllers/

exists app/helpers/

create app/views/community

exists test/functional/

create app/controllers/community_controller.rb

create test/functional/community_controller_test.rb

create app/helpers/community_helper.rb

create app/views/community/index.rhtml

create app/views/community/browse.rhtml

create app/views/community/search.rhtml

This way, users will (for example) be able to search for other users through the URL

http://localhost:3000/community/search

and similarly for browse. Let's update the site navigation now:
file: app/views/layouts/application.rhtml

.

.

.

<%= nav_link "Help", "site", "help" %> |

<%= nav_link "Community", "community", "index" %>

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 374 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

We'll spend the rest of this chapter filling in the Community controller. First, though, we need
to address a fundamental problem: as the site now stands, essentially all efforts to find
RailsSpace users will return nothing.

10.2. Setting up Sample Users
Since we are designing a site for hundreds and potentially thousands of users, we should
develop in the context of a database that contains many sample users. That way, the various
browses and searches will return a realistic number of results. Alas, currently we have only
one user, our old friend Foo Bar, and adding users by hand (as we did for Foo) would be
incredibly cumbersome and time-consuming. Moreover, our development database is
subject to obliteration via migrations and other catastrophes; even if we did enter a bunch
of users by hand, we would risk losing that data.
Our solution is to use the computer to do the hard work for us. We'll create YAML files
containing a sample database of users (as well as their corresponding specs and FAQs). Then
we'll automate the loading of that data using a custom Rake task.

10.2.1. Collecting the Data
In this section we'll construct sample users, specs, and FAQs in YAML format. Our source of
data will be the information for Caltech's Distinguished Alumni, available publicly at

http://alumni.caltech.edu/distinguished_alumni

If you'd prefer to fill your files with data some other way—even writing them by hand—you're
welcome to do so. The key is to have the data in a format that can be conveniently loaded
on demand, so that if the database gets clobbered we can restore its previous state easily.
If you were an ordinary mortal, you could screen-scrape the Distinguished Alumni
information yourself, but since one of us (Aure) built the Caltech Alumni website the sample
data is available for download in YAML format:

http://alumni.caltech.edu/distinguished_alumni/users.yml
http://alumni.caltech.edu/distinguished_alumni/specs.yml
http://alumni.caltech.edu/distinguished_alumni/faqs.yml

The same data files are available at

http://RailsSpace.com/book/

In order to get the results we show in this chapter, you should download these YAML files
and put the them in the following directory:

lib/tasks/sample_data

(This will require creating the sample_data directory.)
By the way, the Distinguished Alumni data is a mix of real and fake information. We have
their real names and official Distinguished Alumnus biographies (which we used for the FAQ

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 375 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

bio field), but we made up information for their birthdate, location, and age. For location, we
spread their zip codes in the range 92101 (San Diego) to 98687 (Vancouver). For their
birthdate, we pretended that they were 50 years old when they got their Distinguished
Alumni award and gave them a birthdate of January 1st 50 years before the award.

10.2.2. Loading the Data
With the sample user data in hand, we next need to copy it from the YAML files to the
development database. In principle, any technique would do; we could parse the file using
Ruby (or even, say, Perl or Python), establish some sort of database connection, and do all
the inserts explicitly. If you think about it, though, Rails must already have a way to do this,
since Rails tests populate a test database with data from YAML files using fixtures. Our strategy
is to piggyback on this machinery to put our sample data into the development database.
We could write a plain Ruby script to do the data insertion, but it's more in the spirit of the
Rails way of doing things to make a custom Rake task to do the job. This involves writing our
own Rakefile. Unsurprisingly, there's a standard location in the Rails directory tree for such
Rakefiles, lib/tasks (so now you see why we put the data in lib/tasks/
sample_data).
Since our Rake tasks involve loading sample data, we'll call our file sample_data.rake.
Rakefiles consists of a series of tasks consisting of Ruby instructions; in our case, we define
the tasks load and delete:
file: lib/tasks/sample_data.rake

Provide tasks to load and delete sample user data.

require 'active_record/fixtures'

namespace :db do

DATA_DIRECTORY = "#{RAILS_ROOT}/lib/tasks/sample_data"

namespace :sample_data do

TABLES = %w(users specs faqs)

MIN_USER_ID = 1000 # Starting user id for the sample data

desc "Load sample data"

task :load => :environment do |t|

class_name = nil # Use nil to get Rails to figure out the class.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 376 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

TABLES.each do |table_name|

fixture = Fixtures.new(ActiveRecord::Base.connection,

table_name, class_name,

File.join(DATA_DIRECTORY, table_name.to_s))

fixture.insert_fixtures

puts "Loaded data from #{table}.yml"

end

end

desc "Remove sample data"

task :delete => :environment do |t|

User.delete_all("id >= #{MIN_USER_ID}")

Spec.delete_all("user_id >= #{MIN_USER_ID}")

Faq.delete_all("user_id >= #{MIN_USER_ID}")

end

end

end

Our method for loading data involves fixtures, so we require the Active Record fixtures library
at the top of the Rakefile. We also follow standard Rakefile practice by preceding each task
with a description (desc). This way, if we ask Rake for all the available tasks, the descriptions
for load and delete appear on the list:

> rake --tasks

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 377 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

rake db:sample_data:delete # Delete sample data

rake db:sample_data:load # Load sample data

.

.

.

Note that by wrapping the task definitions in namespace blocks we've ensured that the
Rake tasks can be invoked using a syntax that is consistent with the other tasks we've seen,
such as

> rake db:test:prepare

The load task uses Fixtures.new to create a fixture, taking in the database connection,
table name, class name, and full path to the fixture data:

Fixtures.new(connection, table_name, class_name, fixture_path)

By setting class_name to nil, we arrange for Rails to figure out the class name based on
the table name. We also build up the various paths using File.join, which constructs a
file path appropriate for the given platform. Once we've created a fixture, we use the
inserts_fixtures method to insert the data into the database. We can reverse the
sample data load using the delete task, which uses the Active Record delete_all
function to delete all the data corresponding to users with ids greater than 1000 (thereby
preserving users such as Foo Bar who have lower ids).
But wait—how did the fixture know about (for example) the User class? And how did it know
how to connect to the database? The answer is the magical line

task :load => :environment do |t|

(and similarly for the delete task). This tells Rake that the load task depends on the Rails
environment. Rake responds by loading the local Rails (development) environment,
including the models and the database connection (which it gets from database.yml). By
using Rails to handle all those details, Rake reduces the system to a previously solved
problem.
If you want your results to match ours, before moving on you should run the Rake task to
load the sample data:

> rake db:sample_data:load

(in /rails/rails_space)

Loaded data from users.yml

Loaded data from specs.yml

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 378 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Loaded data from faqs.yml

10.3. The Community Index
As in the case of all our other controllers, we've created an index action for the Community
controller—but, for the first time we can recall, the name "index" actually makes sense, since
we can use the index page as an alphabetical index of the RailsSpace community members.
The design we have in mind is simple: just link each letter to the RailsSpace users whose last
names start with that letter.
The implementation of this design requires several different layers, including a couple of
partials and some new Active Record trickery. While implementing the various steps, it might
be helpful to bear in mind where we're headed (Fig. 10.1). Note that the URL

http://localhost:3000/community/index/H

Figure 10.1. The finished community index (shown for the letter H).

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 379 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFybmFpc3dwX25zcGgxMWMvMGFnX29paXVfdHRobV9pbV9nYWxqeWF0cC5y

has the full complement of parameters—controller, action, and id—handled by the default
route in routes.rb (Section 2.2.4):
file: config/routes.rb

ActionController::Routing::Routes.draw do |map|

.

.

.

Install the default route as the lowest priority.

map.connect ':controller/:action/:id'

end

It's worth mentioning that each of the three elements is available in the params variable;
for example, params[:id] is H in this case.

10.3.1. Find's New Trick
The Community controller index action will need to find all the users with a particular last
initial. Recall from Section 9.2 that this name information is in the user spec. Somehow we
have to search through the specs to find the relevant names.
You could accomplish such a search in raw SQL using the wildcard symbol % to find all names
starting with (for sample) the letter N, in alphabetical order by name[1]:

[1] In general, ordering names by last_name, first_name sorts the results first by last name and then by first name; this ensures that, e.g., Michelle Feynman would
come before Richard Feynman, and they would both come before Murray Gell-Mann.

SELECT * FROM specs WHERE last_name LIKE 'N%'
ORDER BY last_name, first_name

Unsurprisingly, Active Record provides an abstraction layer for a query like this. It's more
surprising that the solution is to use the find method, which we've seen before in the context
of finding elements by id:

User.find(session[:user_id])

This is not the extent of find's abilities; find is actually quite versatile, able to execute a
variety of different queries. In particular, we can find all the users whose last names start with
the letter N by giving find the options :all, :conditions, and :order:

> ruby script/console

Loading development environment.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 380 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

>> initial = "N"

>> Spec.find(:all, :conditions => "last_name LIKE '#{initial}%'",

?> :order => "last_name, first_name")

=> [#<Spec:0x36390a4 @attributes={"city"=>"", "occupation"=>"", "birthdate"=>"19

36-01-01", "zip_code"=>"96012", "gender"=>"Male", "id"=>"731", "first_name"=>"Roddam",
"user_id"=>"1117", "last_name"=>"Narasimha", "state"=>""}>, #<Spec:0x3638 f3c
@attributes={"city"=>"", "occupation"=>"", "birthdate"=>"1945-01-01", "zip_c ode"=>"96045",
 "gender"=>"Male", "id"=>"655", "first_name"=>"Jerry", "user_id"=> "1118",
 "last_name"=>"Nelson", "state"=>""}>, #<Spec:0x3638dac @attributes={"cit y"=>"",
"occupation"=>"", "birthdate"=>"1941-01-01", "zip_code"=>"96079", "gende r"=>"Male",
"id"=>"713", "first_name"=>"Navin", "user_id"=>"1119", "last_name"=> "Nigam", "state"=>""}>
, #<Spec:0x3638ba4 @attributes={"city"=>"", "occupation"=>

"", "birthdate"=>"1939-01-01", "zip_code"=>"96112", "gender"=>"Male", "id"=>"723",
"first_name"=>"Robert", "user_id"=>"1120", "last_name"=>"Noland", "state"=>""

}

This replicates the raw SQL given above, and it works fine as it is, but we expect that on
RailsSpace the initial will come from the web through params[:id]. Since a user can type
in any "initial" he wants, a malicious cracker could fill params[:id] with a string capable
of executing arbitrary SQL statements—including (but not limited to) deleting our database
[2]. In order to prevent such an attack—called SQL injection—we need to escape any strings
inserted into SQL statements. Active Record accomplishes this by using ? as a place-holder:

[2] Even if we arrange for Rails to access the database as a MySQL user with limited privileges (as should certainly be the case in a production environment), allowing arbitrary
queries is still a Bad Thing.

Spec.find(:all, :conditions => ["last_name LIKE ?", initial+"%"],

:order => "last_name, first_name")

This way, if a user types in

http://RailsSpace.com/community/index/<dangerous string>

in an effort to execute some sort of dangerous query, that dangerous string will be converted
to something benign before being inserted into the conditions clause. Incidentally, we can't
write

:conditions => ["last_name LIKE ?%", initial]

since Rails would then try to execute a query containing

last_name LIKE 'N'%

which is invalid.
Note that, for the escaped version, the value for :conditions is an array rather than a string,
whose first element is the string containing the conditions and whose subsequent elements

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 381 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

are the strings to be escaped and inserted. We can enforce multiple conditions by using
multiple question marks[3]:

[3] See Section 11.3.2 for a second way to insert multiple conditions.

Spec.find(:all, :conditions => ["first_name = ? AND last_name = ?", "Foo", "Bar"])

Of course, in this case we could also use

Spec.find_by_first_name_and_last_name("Foo", "Bar")

which does the escaping for us. This is an example of how Active Record allows us to move
between different levels of abstraction when executing SQL queries, thus giving the user the
best of both worlds: convenience by default but maximum power if needed (see box).

Puncturing the tire of abstraction

One of the design principles of Rails is to provide a layer of nice high-level
functions for many common tasks, while still leaving open a window to the layers
underneath. For example, in order to find a user by screen name and password,
we've seen that Rails creates a function called

User.find_by_screen_name_and_password(screen_name, password)

We've also seen how to push down to a lower level using find:

spec = Spec.find(:all, :conditions => "last_name LIKE 'N%'",

:order => "last_name, first_name")

If you want to, you can drop down another layer deeper and use raw SQL:

spec = Spec.find_by_sql("SELECT * FROM specs

WHERE last_name LIKE 'N%'

ORDER BY last_name, first_name")

This happens to be essentially the same query as the one above, but since
find_by_sql executes plain SQL we can perform arbitrary queries this way. So,
for example, if the bottleneck in your application is some very hairy query—for
which raw SQL can sometimes be an excellent solution—you can always drop
down to the lowest layer and construct an optimized solution.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 382 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

10.3.2. The Index Action
As mentioned above, the community index will serve as a directory of RailsSpace users. With
our newfound Active Record expertise, we're ready to grab the users whose last names begin
with a particular letter. All we need to do in addition to this is create a few instance variables
for use in the views:
file: app/views/controllers/community_controller.rb

class CommunityController < ApplicationController

helper :profile

def index

@title = "Community"

@letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ".split("")

if params[:id]

@initial = params[:id]

specs = Spec.find(:all,

:conditions => ["last_name like ?", @initial+'%'],

:order => "last_name, first_name")

@users = specs.collect { |spec| spec.user }

end

end

def browse

end

def search

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 383 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

end

Note that we've included the Profile helper (using helper :profile) since the community
index will use profile_for to link to user profiles.
There are a couple of new pieces of Ruby syntax in this action. The first and easier one is

"ABCDEFGHIJKLMNOPQRSTUVWXYZ".split("")

This creates an array of strings, one for each letter of the alphabet. It uses the split method,
which may be familiar from Perl, Python, or any of a number of other languages that have a
similar function. Most commonly, split is used to split a string into an array based on
whitespace, but it can split on other strings as well, as shown in this irb example:

> irb

irb(main):001:0> "foo bar baz".split

=> ["foo", "bar", "baz"]

irb(main):002:0> "1foo2fooredfoobluefoo".split("foo")

=> ["1", "2", "red", "blue"]

In the case of the index action, using the blank string "" splits the given string into its
component characters:

irb(main):003:0> "ABCDEFGHIJKLMNOPQRSTUVWXYZ".split("")

=> ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "

P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"]

(Of course, we could also have used

%w(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z)

but that's more typing then we wanted to do; plus, it's high time we introduced the important
split function.)
The second and more important new Ruby syntax shows up in our method for building up
the @users instance variable. In the community index action, the line

users = specs.collect { |spec| spec.user }

marches through specs and collects an array of the corresponding users[4]. As you might
guess from context, the curly braces {...} are an alternate syntax for Ruby blocks; the effect
of the code shown is essentially identical[5] to the syntax we've seen before using
do...end:

[4] We first encountered collect in Section 5.6.5 when we built up a list of valid email addresses for testing validations.

[5] The only difference is that braces have a higher precedence than do...end; this rarely matters.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 384 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

users = specs.collect do |spec|

spec.user

end

In fact, you can use the brace syntax across multiple lines if you want, as follows:

users = specs.collect { |spec|

spec.user

}

Which version to use is purely a matter of convention. We follow the convention used by our
two favorite Ruby books, Programming Ruby and The Ruby Way: use the brace syntax for one-
line blocks and the do...end syntax for multi-line blocks.

10.3.3. The Alphabetical Index
It's time now to put our instance variables to work in the community index view. We'll start
with a display of the index itself, which starts out simply as a list of letters:
file: app/views/community/index.rhtml

<h2><%= @title %></h2>

<fieldset>

<legend>Alphabetical Index</legend>

<% @letters.each do |letter| %>

<% letter_class = (letter == @initial) ? "letter_current" : "letter" %>

<%= link_to letter, { :action => "index", :id => letter },

:class => letter_class %>

<% end %>

<br clear="all" />

</fieldset>

We iterate over all the letters in the alphabet using the each method (see box for an alternate
method), and for each letter we define a CSS class (using the ternary operator) to indicate

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 385 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

whether a particular letter is currently selected. Then we link back to the index page with the
current letter as the id.
It's important to emphasize that the curly braces around { :action => "index", :id
=> letter } are necessary in the call to link_to. The arguments to link_to take the
form

link_to(name, options = {}, html_options = nil)

We need the curly braces to tell Rails when the options hash ends and the HTML options hash
begins; if we wrote

<%= link_to letter, { :action => "index", :id => letter },

:class => letter_class %>

the entire hash

:action => "index", :id => letter, :class => letter_class

would end up in options. As a result, instead of links like

A

we would get links of the form

A

which isn't what we want at all.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 386 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

for letter in @letters?

To construct the alphabetical list for the community index, we use the syntax

<% @letters.each do |letter| %>

.

.

.

<% end %>

This is the canonical Ruby way to iterate through an array, but you should be aware
that, inside views, some Rails programmers use the alternate syntax

<% for letter in @letters %>

.

.

.

<% end %>

This is possibly because they think this syntax will be less confusing to any
nonprogrammers—web designers come to mind—who might chance upon it.
We have no problem with the alternate syntax—it's identical to Python's main
looping construct, which we love—but using each is definitely more Rubyish:
Ruby typically uses methods to send instructions to objects[6], in this case using
each to tell an array to return each of its elements in turn. Because we see no
compelling reason for a style bifurcation, we'll stick with each, even in views.

[6] This design philosophy, called "message passing", is inspired principally by Smalltalk.

To get the look we want for the community index, we will take advantage of the great power
CSS provides to style anchor (a) tags. Just add the following rules to site.css:
file: public/stylesheets/site.css

/* Community Styles */

a, a#visited {

color: maroon;

text-decoration: none;

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 387 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

}

.letter, .letter_current {

width: 1em;

text-align: center;

 border: 1px solid gray;
 background: #fff;
 padding: 5px 2px 1px 2px;
 float: left;
 margin: 2px
}

.letter:hover {
 background: #fe4;
}

.letter_current {
 background: #fe4;
 font-weight: bold;
 border: 1px solid black;
}

Now the community index page is already looking fairly good (Fig. 10.2), even though it
doesn't really do anything yet. Let's take care of that second part now.

Figure 10.2. The RailsSpace community page with a nicely styled alphabetical index.

[View full size image]

10.3.4. Displaying Index Results
In Section 10.3.2, the community index action created an instance variable @users
containing the users for display in the view. We'll put that variable to good use in a user results

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 388 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyYV9ocGFweWpzYWgxMmMvbDBwX2xsbmdfdG8uX2k-

table, which we'll put in a partial called app/views/community/
_user_table.rhtml.
First we need to invoke the partial from index.rhtml:
file: app/views/community/index.rhtml

.

.

.

<%= render :partial => "user_table" %>

The user table partial then creates a results table (if there are any results to show), iterating
through the users to create a table row for each one:
file: app/views/community/_user_table.rhtml

<% if @users and not @users.empty? %>

<table class="users" border="0" cellpadding="5" cellspacing="1">

<tr class="header">

<th>Name</th> <th>Age</th> <th>Gender</th> <th>Location</th>

</tr>

<% @users.each do |user| %>

<tr class="<%= cycle('odd', 'even') %>">

<td><%= link_to user.name, profile_for(user) %>

</td>

<td><%= user.spec.age %></td>

<td><%= user.spec.gender %></td>

<td><%= user.spec.location %></td>

</tr>

<% end %>

</table>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 389 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<% end %>

Note the use of the Rails helper function cycle, which (by default) cycles back and forth
between its two arguments[7], making the assignment of alternating CSS classes a snap. Notice
also that in the call to link_to we used the profile_url function generated by the
routing rule introduced in Section 9.1.1:

[7] See the Rails API entry on cycle for some fancier examples.

file: config/routes.rb
map.connect 'profile/:screen_name', :controller => 'profile', :action => 'show'

We also used the new name method in the User model, which returns the user user's full
name if available and otherwise returns the screen name:file: app/models/user.rb

Return a sensible name for the user.

def name

spec.full_name.or_else(screen_name)

end

This function also finds use in app/views/user/index.rhtml from Section 9.4.4 and
app/view/profile/show.rhtml from Section 9.6; go ahead and use it in those places
if you like.
To get the partial to work, we need to do one more thing: add an age method to the Spec
model so that @user.spec.age exists:
file: app/models/spec.rb

Return the age using the birthdate.

def age

return if birthdate.nil?

today = Date.today

if today.month >= birthdate.month and today.day >= birthdate.day

Birthday has happened already this year.

today.year - birthdate.year

else

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 390 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

today.year - birthdate.year - 1

end

end

That essentially completes the functionality, as shown in Fig. 10.3, but it doesn't look good
yet. To add some style to the user results, including the alternating table row styles from
cycle, add the following rules to the Community Styles section of site.css:

Figure 10.3. The final form of the community index.

[View full size image]

file: public/stylesheets/site.css
/* Community Styles */

.

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 391 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyYXJlZV9wbG5zaGgxM2MvMF9zX19zaF9vdGN5YV9pbHB0amcu

table.users {

background: #fff;

margin-left: 2em;

}

table.users td.bottom {
 border-top: 1px solid #999;
 padding-top: 10px;
}

table.users th {
 color: white;
 background: maroon;
 font-weight: normal;
}

table.users th a {

 color: white;
 text-decoration: underline;
}

table.users tr.even {
 background: #ddd;
}

table.users tr.odd {
 background: #eee;
}

There's one small change left to make to get everything to work right; we have to change
our navigation link function in the Application helper:
file: app/helpers/application_helper.rb

Return a link for use in site navigation.

def nav_link(text, controller, action="index")

link_to_unless_current text, :id => nil,

:action => action,

:controller => controller

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 392 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The reason this is necessary is quite subtle: without an id of any kind in the call to
link_to_unless_current, Rails doesn't know the difference between /community/
index and (say) /community/index/A; as a result, the Community navigation link won't
appear unless we add the :id => nil option.
At the same time, we have to modify the Rails route for the root of our site to take into account
the presence of a nil id:
file: config/routes.rb

.

.

.

You can have the root of your site routed by hooking up ''

-- just remember to delete public/index.html.

map.connect '', :controller => 'site', :action => 'index', :id => nil

.

.

.

This way, / will still automatically go to /site/index.
With that one niggling detail taken care of, we're finally done with the community index
(Fig. 10.4).

Figure 10.4. Page after adding style to the results table.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 393 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyYXJleXRwdHdzaGgxNGMvMF9zX19oaGxpX2NzZV9pXy5hcGp0Z2w-

10.4. Polishing Results
As it stands, our user table is a perfectly serviceable way to display results. There are a couple
of common refinements, though, that lead to better displays when there are relatively large
number of users. In this section, we show how Rails makes it easy to paginate results, so that
links the list of users will be conveniently partitioned into smaller pieces. We'll also add a
helpful result summary indicating how many results were found. As you might suspect, we'll
put the code we develop in this section to good use later on when we talk about searching
and browsing.

10.4.1. Adding Pagination
Our community index should be able to handle multiple pages of results, so that as RailsSpace
grows the display stays manageable. We'll plan to display one page of results at a time, while
providing links to the other pages. This is a common pattern for displaying information on
the web, so Rails has a couple of helper functions to make it easy. In the controller, all we

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 394 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

need to do is replace the database find with a call to the paginate function. Their syntax
is very similar; just change this
file: app/controllers/community_controller.rb

specs = Spec.find(:all,

:conditions => ["last_name LIKE ?", @initial+'%'],

:order => "last_name")

to this:
file: app/controllers/community_controller.rb

@pages, specs = paginate(:specs,

:conditions => ["last_name LIKE ?", @initial+"%"],

:order => "last_name, first_name")

In place of :all, paginate takes a symbol representing the table name, but the other two
options are the same. (For more options, see the Rails API entry for paginate.) Like
Spec.find, paginate returns a list of specs, but it also returns a list of pages for the results
in the variable @pages; note that paginate returns a two-element array, so we can assign
both variables at the same time using Ruby's multiple assignment syntax:

a, b = [1, 2] # a is 1, b is 2

Don't worry too much about what @pages is exactly; its main purpose is to be fed to the
pagination_links function in the view, which we'll do momentarily.
We'll be paginating results only if the @pages variable exists and has a length greater than
one, so we'll make a short helper function to test for that:
file: app/helpers/application_helper.rb

module ApplicationHelper

.

.

.

Return true if results should be paginated.

def paginated?

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 395 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

@pages and @pages.length > 1

end

end

Since we can expect to use paginated? in more than one place, we put it in the main
Application helper file.
All we have left is to put the paginated results at the end of the user table if necessary, using
the pagination_links helper function mentioned above:
file: app/views/community/_user_table.rhtml

<% if @users and not @users.empty? %>

<table class="users" border="0" cellpadding="5" cellspacing="1">

.

.

.

<% end %>

<% if paginated? %>

<tr>

<td colspan="4" align="right">

Pages: <%= pagination_links(@pages, :params => params) %>

</td>

</tr>

<% end %>

</table>

<% end %>

Here we use the function pagination_links, which takes the pages variable generated
by paginate and produces links for multiple pages as shown in Fig. 10.5.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 396 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Figure 10.5. Paginated alphabetical listing.

[View full size image]

By the way, we've told pagination_links about the params variable using :params
=> params so that it can incorporate submitted parameters into the URLs of the links it
creates. We don't actually need that right now, but we will in Chapter 11, and it does no harm
now.

10.4.2. A Results Summary
It's common when returning search results to indicate the total number of results and, if the
results are paginated, which items are being displayed. In other words, we want to say
something like "Found 15 matches. Displaying users 1–10." Let's add a partial to implement
this result summary feature:
file: app/views/community/_result_summary.rhtml

<% if @pages %>

<p>

Found <%= pluralize(@pages.item_count, "match") %>.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 397 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFybmFpc2VwdF9zcGgxNWMvMGFnX2RzZV9ydXRsYV9pbHB0amcu

 <% if paginated? %>
 <% first = @pages.current_page.first_item %>
 <% last = @pages.current_page.last_item %>
 Displaying users <%= first %>–<%= last %>.
 <% end %>
</p>
<% end %>

Then render the partial in the index:
file: app/views/community/index.rhtml

.

.

.

<%= render :partial => "result_summary" %>

<%= render :partial => "user_table" %>

You can see from this that the @pages variable returned by paginate has several attributes
making just such a result summary easier: item_count, which has the total number of
results, and current_page.first_item and current_page.last_item which have
the number of the first and last items on the page. The results are now what we advertised
—i.e., what we promised to achieve way back in Fig. 10.1.
We should note that the result summary partial also uses a convenient Rails helper function,
pluralize[8]:

[8]pluralize is not included by default in a console session, so we have to include it explicitly; we figured out which module to load by looking in the Rails API.

> ruby script/console

Loading development environment.

>> include ActionView::Helpers::TextHelper

=> Object

>> pluralize(0, "box")

=> "0 boxes"

>> pluralize(1, "box")

=> "1 box"

>> pluralize(2, "box")

=> "2 boxes"

>> pluralize(2, "box", "boxen")

=> "2 boxen"

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 398 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

pluralize uses the Rails inflector (mentioned briefly in Section 3.1.3) to determine the
appropriate plural of the given string based on the first argument, which indicates how many
objects there are. If you want to override the inflector (or provide a plural for a word that Rails
gets wrong) you can give a third argument with the right pluralization. All of this is to say,
there's no excuse for having "1 result(s) found"—or, God forbid, "1 results found"—in a Rails
app.

11. Searching and browsing

In principle, the alphabetical community index lets any user find any other, but using it in
this way would be cumbersome. In this chapter, we add more convenient and powerful ways
to find other users. We begin by adding full-text search to RailsSpace by making use of an
open-source project called Ferret. We then stalker-enable our site with browsing by age, sex,
and location.
Adding search and browse capability to RailsSpace will involve the creation of custom
pagination and validations, which means that we will start to rely less on the built-in Rails
functions. This chapter also contains a surprising amount of geography, some fairly fancy
finds, and even a little math.

11.1. Searching
Though it was quite a lot of work to get the community index to look and behave just how
we wanted, the idea behind it is very simple. In contrast, full text search—for user information,
specs, and FAQs—is a difficult problem, and yet most users probably expect a site such as
RailsSpace to provide it. Luckily, the hardest part has already been done for us by the Ferret
project[1], a full-text search engine written in Ruby. Ferret makes adding full text search to
Rails applications a piece of cake through the acts_as_ferret plugin.

[1]http://ferret.davebalmain.com/trac/

In this section we'll make a simple search form (adding it to the main community page in the
process), and then construct an action that uses Ferret to search RailsSpace based on a query
submitted by the user.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 399 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://ferret.davebalmain.com/trac/

11.1.1. Search Views
Since there's some fairly hairy code in the back-end, it will be nice to have a working search
form that we can use to play with as we build up the search action incrementally. Since we'll
want to use the search form in a couple of places, let's make it a partial:
file: app/views/community/_search_form.rthml

<% form_tag({ :action => "search" }, :method => "get") do %>

<fieldset>

<legend>Search</legend>

<div class="form_row">

<label for="q">Search for:</label>

<%= text_field_tag "q", params[:q] %>

<input type="submit" value="Search" />

</div>

</fieldset>

<% end %>

This is the first time we've constructed a form without using the form_for function, which
is optimized for interacting with models. For search, we're not constructing a model at any
point; we just need a simple form to pass a query string to the search action. Rails makes this
easy with the form_tag helper, which has the prototype

form_tag(url_for_options = {}, options = {})

The form_tag function begins a block for the form; when the block ends, it automatically
produces the </form> tag to end the form. This means that the rhtml

<% form_tag({ :action => "search" }, :method => "get") do %>

.

.

.

<% end %>

produces the HTML

<form action="/community/search" method="get">

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 400 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

.

.

</form>

Note that in this case we've chosen to have the search form submit using a GET request,
which is conventional for search engines (and allows, among other things, direct linking to
search results since the search terms appear in URL).
Note that, as in the case of the link_to in the community index (Section 10.3.3), the curly
braces around { :action => "search" } are necessary. If we left them off and wrote
instead

<% form_tag(:action => "search", :method => "get") %>

.

.

.

<% end %>

then Rails would generate

<form action="/community/search?method=get" method="post">

.

.

.

</form>

instead of

<form action="/community/search" method="get">

.

.

.

</form>

The other Rails helper we use is text_field_tag, which makes a text field filled with the
value of params[:q]. That is, if params[:q] is "foobar", then

<%= text_field_tag "q", params[:q] %>

produces the HTML

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 401 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<input id="q" name="q" type="text" value="foobar" />

We've done a lot of work making useful partials, so the search view itself is beautifully simple:
file: app/views/community/search.rthml

<%= render :partial => "search_form" %>

<%= render :partial => "result_summary" %>

<%= render :partial => "user_table" %>

We'll also put the search form on the community index page (but only if there is no
@initial variable, since when the initial exists we want to display only the users whose
last names begin with that letter):
file: app/views/community/index.rhtml

.

.

.

<% if @initial.nil? %>

<%= render :partial => "search_form" %>

<% end %>

You can submit queries to the resulting search page (Fig. 11.1) to your heart's content, but
of course there's a hitch: it doesn't do anything yet. Let's see if we can ferret out a solution
to that problem.

Figure 11.1. The evolving community index page now includes a search form.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 402 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyY2hyal9wLnJzc2gxMWMvMWVhX29hZnBtbF90Z19p

11.1.2. Ferret
As its web page says, "Ferret is a high-performance, full-featured text search engine library
written for Ruby." Ferret, in combination with acts_as_ferret, builds up an index of the
information in any data model or combination of models. In practice, what this means is that
we can search through (say) the user specs by associating the special acts_as_ferret
attribute with the Spec model and then using the method Spec.find_by_contents,
which is added by the acts_as_ferret plugin. (If this all seems overly abstract, don't
worry; there will be several concrete examples momentarily.)
Ferret is relatively easy to install, but it's not entirely trouble-free. On OS X it looks something
like this[2]:

[2] As with the installation steps in Chapter 2, if you don't have sudo enabled for your user, you will have to log in as root to install the ferret gem.

> sudo gem install ferret

Attempting local installation of 'ferret'

Local gem file not found: ferret*.gem

Attempting remote installation of 'ferret'

Updating Gem source index for: http://gems.rubyforge.org

Select which gem to install for your platform (powerpc-darwin7.8.0)

1. ferret 0.10.11 (ruby)

2. ferret 0.10.10 (ruby)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 403 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

3. ferret 0.10.9 (mswin32)

.

.

.

39. Cancel installation

> 1 Building native extensions. This could take a while...

.

.

.

Successfully installed ferret, version 0.10.11

The process is virtually identical for Linux; in both Mac and Linux cases you should choose
the most recent version of Ferret labeled "(ruby)", which should be #1. If, on the other hand,
you're using Windows, run

> gem install ferret

and be sure to choose the most recent version of Ferret labeled "mswin32", which probably
won't be the first choice.
The second step is to install the Ferret plugin[3]:

[3] If you don't have the version control system Subversion installed on your system, you should download and install it at this time (http://subversion.tigris.org/). If you
have experience compiling programs from source, you should have no trouble, but if you are more comfortable with Windows installations then you should skip right to
http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=91 and download the svn-<version>-setup.exe with the highest version number. Double-
clicking on the resulting executable file will then install Subversion.

> ruby script/plugin install svn://projects.jkraemer.net/acts_as_ferret/tags/stable/
acts_as_ferret

A /rails/rails_space/vendor/plugins/acts_as_ferret

A /rails/rails_space/vendor/plugins/acts_as_ferret/LICENSE

A /rails/rails_space/vendor/plugins/acts_as_ferret/rakefile

A /rails/rails_space/vendor/plugins/acts_as_ferret/init.rb

A /rails/rails_space/vendor/plugins/acts_as_ferret/lib

A /rails/rails_space/vendor/plugins/acts_as_ferret/lib/more_like_this.rb

A /rails/rails_space/vendor/plugins/acts_as_ferret/lib/multi_index.rb

A /rails/rails_space/vendor/plugins/acts_as_ferret/lib/acts_as_ferret.rb

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 404 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://subversion.tigris.org/
http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=91

A /rails/rails_space/vendor/plugins/acts_as_ferret/lib/instance_methods.rb

A /rails/rails_space/vendor/plugins/acts_as_ferret/lib/class_methods.rb

A /rails/rails_space/vendor/plugins/acts_as_ferret/README

That may look intimidating, but the good news is that you don't have to touch any of these
files. All you have to do is restart the development webserver to activate Ferret and then
indicate that the models are searchable using the (admittedly somewhat magical)
acts_as_ferret function:
file: app/models/spec.rb

class Spec < ActiveRecord::Base

belongs_to :user

acts_as_ferret

.

.

.

file: app/models/faq.rb
class Faq < ActiveRecord::Base

belongs_to :user

acts_as_ferret

.

.

.

file: app/models/user.rb
class User < ActiveRecord::Base

has_one :spec

has_one :faq

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 405 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

acts_as_ferret :fields => ['screen_name', 'email'] # but NOT password
.
.
.

Notice in the case of the User model that we used the :fields options to indicate which
fields to make searchable. In particular, we made sure not to include the password field!

11.1.3. Searching with Find_By_Contents
Apart from implying that he occasionally chases rabbits from their burrows, what does it
mean when we say that a user acts_as_ferret? For the purposes of RailsSpace search,
the answer is that acts_as_ferret adds a function called find_by_contents that uses
Ferret to search through the model, returning results corresponding to a given query string
(which, in our case, comes from the user-submitted search form).
The structure of our search action builds on find_by_contents to create a list of matches
for the query string:
file: app/controllers/community_controller.rb

def search

@title = "Search RailsSpace"

if params[:q]

query = params[:q]

First find the user hits...

@users = User.find_by_contents(query, :limit => :all)

...then the subhits.

specs = Spec.find_by_contents(query, :limit => :all)

faqs = Faq.find_by_contents(query, :limit => :all)

.

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 406 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Here we've told Ferret to find all the search hits in each of the User, Spec, and FAQ models.
Amazingly, that's all there is to it, as far as search goes: just those three lines are sufficient to
accomplish the desired search. In fact, if you submit a query string from the search form at
this point, the results should successfully be returned—though you will probably find that
your system takes a moment to respond, since the first time Ferret searches the models it
takes a bit of time while it builds an index of search results. This index, which Ferret stores in
a directory called index in the root Rails directory, is what makes the magic happen—but
it is also the source of some problems (see box).

A dead Ferret[4]

Occasionally, when developing with Ferret, the search results will randomly
disappear. This is usually associated with changes in the database schema (from
a migration, for example). When Ferret randomly croaks in this manner, the
solution is simple:

1. Shut down the webserver

2. Delete Ferret's index directory

3. Restart the webserver

At this point, Ferret will rebuild the index the next time you try a search, and
everything should work fine.

[4] "He's not dead—he's resting!"

Now that we've got the search results from Ferret, we have to collect the users for display;
this requires a little Ruby array manipulation trickery:
file: app/controllers/community_controller.rb

def search

if params[:q]

query = params[:q]

First find the user hits...

@users = User.find_by_contents(query, :limit => :all)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 407 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

...then the subhits.

specs = Spec.find_by_contents(query, :limit => :all)

faqs = Faq.find_by_contents(query, :limit => :all)

Now combine into one list of distinct users sorted by last name.

hits = specs + faqs

@users.concat(hits.collect { |hit| hit.user }).uniq!

Sort by last name (requires a spec for each user).

@users.each { |user| user.spec ||= Spec.new }

@users = @users.sort_by { |user| user.spec.last_name }

end

This introduces the concat and uniq! functions, which work like this:

> irb

irb(main):001:0> a = [1, 2, 2, 3]

=> [1, 2, 2, 3]

irb(main):002:0> b = [4, 5, 5, 5, 6]

=> [4, 5, 5, 5, 6]

irb(main):003:0> a.concat(b)

=> [1, 2, 2, 3, 4, 5, 5, 5, 6]

irb(main):004:0> a

=> [1, 2, 2, 3, 4, 5, 5, 5, 6]

irb(main):005:0> a.uniq!

=> [1, 2, 3, 4, 5, 6]

irb(main):006:0> a

=> [1, 2, 3, 4, 5, 6]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 408 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

You can see that concat concatenates two arrays a and b by appending b to a, while
a.uniq! modifies a[5] by removing duplicate values (thereby ensuring that each element is
unique).

[5] Recall from Section 6.6.2 that the exclamation point is a hint that on operation mutates the object in question.

We should note that the line

@users = @users.sort_by { |user| user.spec.last_name }

also introduces a new Ruby function, used here to sort the users by last name; it's so
beautifully clear that we'll let it pass without further comment.
At this stage, the search page actually works, as you can see from Fig. 11.2. But, like the first
cut of the RailsSpace community index, it lacks a result summary and pagination. Let's make
use of all the work we did in Section 10.4 and add those features to the search results.

Figure 11.2. Search results for q=*, returning unpaginated results for all users.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 409 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyY2hydGFwYV9zc2gxMmMvMWVhX29nbmlwaV9ub19pbnRfai5scGdh

11.1.4. Adding Pagination to Search
Now that we've collected the users for all of the search hits, we're tantalizingly close to being
done with search. All we have to do is paginate the results and add the result summary. In
analogy with the pagination from Section 10.4.1, what we'd really like to do is this:
file: app/controllers/community_controller.rb

def search

if params[:q]

.

.

.

@pages, @users = paginate(@users)

end

end

Unfortunately, the built-in paginate function only works when the results come from a
single model. It's not too hard, though, to extend paginate to handle the more general
case of paginating an arbitrary list—we'll just use the Paginator class (on which
paginate relies) directly. Since we'd like the option to paginate results in multiple
controllers, will put the paginate function in the Application controller:
file: app/controllers/application.rb

class ApplicationController < ActionController::Base

.

.

.

Paginate item list if present, else call default paginate method.

def paginate(arg, options = {})

if arg.instance_of?(Symbol) or arg.instance_of?(String)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 410 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Use default paginate function.

collection_id = arg # arg is, e.g., :specs or "specs"

super(collection_id, options)

else

Paginate by hand.

items = arg # arg is a list of items, e.g., users

items_per_page = options[:per_page] || 10

page = (params[:page] || 1).to_i

result_pages = Paginator.new(self, items.length, items_per_page, page)

offset = (page - 1) * items_per_page

[result_pages, items[offset..(offset + items_per_page - 1)]]

end

end

end

There is some moderately advanced Ruby here, but we'll go through it step by step. In order
to retain compatibility with the original paginate function, the first part of our
paginate checks to see if the given argument is a symbol or string (such as, e.g., :specs
as in Section 10.4.1), in which case it calls the original paginate function using super (a
usage we saw before in Section 9.5).
If the first argument is not a symbol or string, we assume that it's an array of items to be
paginated. Using this array, we create the result pages using a Paginator object, which is
initialized as follows:

Paginator.new(controller, item_count, items_per_page, current_page=1)

In the context of the Application controller, the first argument to new is just self, while the
item count is just the length of items and the items per page is either the value of options
[:per_page] or 10 (the default). We get the number of the current page by using

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 411 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

page = (params[:page] || 1).to_i

which uses the to_i function to convert the result to an integer, since params[:page]
will be a string if it's not nil[6].

[6] Calling to_i on 1 does no harm since it's already an integer.

Once we've created the results pages using the Paginator, we calculate the array indices
needed to extract the page from items, taking care to avoid off-by-one errors. For example,
when selecting the third page (page = 3) with the default pagination of 10,

offset = (page - 1) * items_per_page

yields

offset = (3 - 1) * 10 = 20

so that

items[offset..(offset + items_per_page - 1)]

is equivalent to

items[20..39]

which is indeed the third page.
Finally, at the end of paginate, we return the two-element array

[result_pages, items[offset..(offset + items_per_page - 1)]]

so that the object returned by our paginate function matches the one from the original
paginate.
That's a lot of work, but it's worth it; the hard-earned results appear in Fig. 11.3. Note that, if
you follow the link for (say) page 2, you get the URL of the form

http://localhost:3000/community/search?page=2&q=*

Figure 11.3. Search results for q=*, returning paginated results for all users.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 412 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFybmFpX2VwaF9zcGgxM2MvMWFnX2RhZWFzcnRjbF9pdGcucGo-

which contains the query string as a parameter. This works because back in Section 10.4.1
we told pagination_links about the params variable:
file: app/views/community/_user_table.rhtml

.

.

.

Pages: <%= pagination_links(@pages, :params => params) %>

.

.

.

11.1.5. An Exception to the Rule
We're not quite done a search; there's one more thing that can go wrong: alas, some search
strings cause Ferret to croak. In this case, as seen in Fig. 11.4, Ferret raises the exception

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 413 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Ferret::QueryParser::QueryParseException

Figure 11.4. Ferret throws an exception when given an invalid search string.

[View full size image]

indicating its displeasure with our query string.
The way to handle this in Ruby is to wrap the offending code in a begin...rescue block
to catch and handle the exception:
file: app/controllers/community_controller.rb

def search

if params[:q]

query = params[:q]

begin

First find the user hits...

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 414 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyZXRyX3BwbmNzZmgxNGMvMWVyX3h0ZWFlaV9vbF9pdGcucGo-

@users = User.find_by_contents(query, :limit => :all)

...then the subhits.

specs = Spec.find_by_contents(query, :limit => :all)

faqs = Faq.find_by_contents(query, :limit => :all)

Now combine into one list of distinct users sorted by last name.

hits = specs + faqs

@users.concat(hits.collect { |hit| hit.user }).uniq!

Sort by last name (requires a spec for each user).

@users.each { |user| user.spec ||= Spec.new }

@users = @users.sort_by { |user| user.spec.last_name }

@pages, @users = paginate(@users)

rescue Ferret::QueryParser::QueryParseException

@invalid = true

end

end

end

Here we tell rescue to catch the specific exception raised by Ferret parsing errors, and then
set the @invalid instance variable so that we can put an appropriate message in the view
(Fig. 11.5):
file: app/views/community/search.rhtml

<%= render :partial => "search_form" %>

<% if @invalid %>

<p>Invalid character in search.</p>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 415 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<% end %>

<%= render :partial => "result_summary" %>

<%= render :partial => "user_table" %>

Figure 11.5. The ferret query parse exception caught and handled.

[View full size image]

And with that, we're finally done with search!

11.2. Testing Search
Testing the search page is easy in principle: just hit /community/search with an
appropriate query string and make sure the results are what we expect. But a key part of
testing search should be to test the (currently untested) pagination. Since we're using the
default pagination value of 10, that means creating at least 8 more users to add to the three
currently in our users fixture[7]:

[7] Even though one of these users is invalid, it still exists in the test database when the Rails test framework loads the fixtures; Ferret doesn't know anything about validations,
so it gamely finds all three users.

file: test/fixtures/users.yml
Read about fixtures at http://ar.rubyonrails.org/classes/Fixtures.html

valid_user:

id: 1

screen_name: millikan

email: ram@example.com

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 416 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFybGlhcnJwZWhzaWgxNWMvMW52X2NhX19hY2R0YV9pbHB0amcu

password: electron

invalid_user:

id: 2

screen_name: aa/noyes

email: anoyes@example,com

password: sun

Create a user with a blank spec.

specless:

id: 3

screen_name: linusp

email: lpauling@example.com

password: 2nobels

Of course, we could hand-code 8 more users, but that's a pain in the neck. Fortunately, Rails
has anticipated our situation by enabling embedded Ruby in YAML files, which works to same
way that it does in views. This means we can generate our extra users automatically by adding
a little ERb to users.yml:
file: test/fixtures/users.yml

.

.

.

Create 10 users so that searches can invoke pagination.

<% (1..10).each do |i| %>

user_<%= i %>:

id: <%= i + 3 %>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 417 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

screen_name: user_<%= i %>

email: user_<%= i %>@example.com

password: foobar

<% end %>

Note that our generated users have IDs given by <%= i + 3 %> rather than <%= i %> in
order to avoid conflicts with the previous users' ids.
With these extra 10 users, a search for all users using the wildcard query string "*" should
find a total of 13 matches, while displaying matches 1–10:
file: test/functional/community_controller_test

.

.

.

class CommunityControllerTest < Test::Unit::TestCase

fixtures :users

fixtures :specs

fixtures :faqs

.

.

.

def test_search_success

get :search, :q => "*"

assert_response :success

assert_tag "p", :content => /Found 13 matches./

assert_tag "p", :content => /Displaying users 1–10./

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 418 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

end

This gives

> ruby test/functional/community_controller_test.rb -n test_search_success

Loaded suite test/functional/community_controller_test

Started

.

Finished in 0.849541 seconds.

1 tests, 3 assertions, 0 failures, 0 errors

Despite being short, this test catches several common problems, and proved valuable while
developing the search action.

11.3. Beginning Browsing
Because Ferret does the heavy search lifting, browsing for users—though less general than
search—is actually more difficult. In this section and the next (Section 11.4) we'll set out to
create pages that allow the user to find others by specifying age (through a birthdate range),
sex, and location (within a particular distance of a specified zip code)—the proverbial "A/S/
L" from chat rooms. In the process, we'll create a nontrivial custom form (with validations)
and also gain some deeper experience with the Active Record find function (including some
fairly fancy SQL).

11.3.1. The Browse Page
Let's start by constructing a browse page, which will be a large custom (that is, non-
form_for) form. On the back-end, the action is trivial for now:
file: app/views/controllers/community_controller.rb

def browse

@title = "Browse"

end

The browse view is also trivial, since it just pushes the hard work into a partial:
file: app/views/community/browse.rhtml

<%= render :partial => "browse_form" %>

<%= render :partial => "result_summary" %>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 419 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<%= render :partial => "user_table" %>

This brings us to the browse form itself, which is relatively long but whose structure is simple.
Using Rails tag helpers and the params variable, we build up a form with fields for each of
the A/S/L attributes:
file: app/views/community/_browse_form.rhtml

<% form_tag({ :action => "browse" }, :method => "get") do %>

<fieldset>

<legend>Browse</legend>

<div class="form_row">

<label for="age">Age:</label>

<%= text_field_tag "min_age", params[:min_age], :size => 2 %>

–

<%= text_field_tag "max_age", params[:max_age], :size => 2 %>

</div>

<div class="form_row">

<label for="gender">Gender:</label>

<%= radio_button_tag :gender, "Male",

params[:gender] == 'Male',

:id => "Male" %>Male

<%= radio_button_tag :gender, "Female",

params[:gender] == 'Female',

:id => "Female" %>Female

</div>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 420 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<div class="form_row">

<label for="location">Location:</label>

Within

<%= text_field_tag "miles", params[:miles], :size => 4 %>

miles from zip code:

<%= text_field_tag "zip_code", params[:zip_code],

:size => Spec::ZIP_CODE_LENGTH %>

</div>

<%= submit_tag "Browse", :class => "submit" %>

</fieldset>

<% end %>

As in Section 11.1.1, we use text_field_tag, which has the function prototype

text_field_tag(name, value = nil, options = {})

so that if, for example, params[:min_age] is 55, the code

<%= text_field_tag "min_age", params[:min_age], :size => 2 %>

produces the HTML

<input id="min_age" name="min_age" size="2" type="text" value="55" />

Similarly, we have the radio button helper,

radio_button_tag(name, value, checked = false, options = {})

Then if params[:gender] is "Female", the code

<%= radio_button_tag :gender, "Female",

params[:gender] == 'Female',

:id => "Female" %>Female

produces

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 421 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<input checked="checked" id="Female" name="gender" type="radio" value="Female" />

with the Female box "checked"[8] since params[:gender] == 'Female' is true.

[8] It's actually filled in rather than checked since it's a radio button and not a check box, but we can't help the terminology used by the HTML standard.

With the browse form partial thus defined, the browse view is already in its final form (Fig.
11.6).

Figure 11.6. The final browse form.

[View full size image]

11.3.2. Find by A/S/L (Hold the L)
The browse form already "works" in the sense that it doesn't break if you submit it, and it
even remembers the values you entered (Fig. 11.7). Apart from that, though, it doesn't
actually do anything. Let's take the first step toward changing that:
file: app/views/controllers/community_controller.rb

def browse

@title = "Browse"

return if params[:commit].nil?

specs = Spec.find_by_asl(params)

@pages, @users = paginate(specs.collect { |spec| spec.user })

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 422 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyc2V3al9wLnJzYmgxNmMvMXJvX29hZnBtbF90Z19p

Figure 11.7. The browse form with some values submitted.

[View full size image]

In keeping with our usual practice, we've hidden as many details as possible beneath an
abstraction layer, in this case the function find_by_asl, which we've chosen to be a class
method for the Spec model.
We'll implement find_by_asl momentarily, but first we need to explain the line

return if params[:commit].nil?

You may have noticed in Fig. 11.7 that the string browse=commit appears in the URL[9]; this
means that params[:commit] tells us if the form has been submitted. As a result,

[9]browse=commit is inserted automatically by the Rails submit_tag helper.

return if params[:commit].nil?

returns if the form hasn't been submitted, thereby causing Rails to render the browse form
immediately. (In previous chapters, we used the param_posted? function defined in
Section 6.6.5 to detect form submission via POST requests, but, like the search form, the
browse form uses a GET request instead.)
Having addressed the case of hitting the browse page directly, it's now time to handle browse
form submission by writing find_by_asl for browsing by age and sex. (Though fairly tricky,
the age and sex searches are much easier than the search by location, so we defer the latter
to Section 11.4.2.) Browsing by age and sex involves the trickiest database query so far, so
we'll discuss each piece of the puzzle before assembling them into the final
find_by_asl method. For concreteness, let's consider the case of searching for all female
RailsSpace members between the ages of 55 and 65[10].

[10] Recall that our sample data is based on Caltech distinguished alumni, with made-up ages starting at 50. Real RailsSpace members, of course, are likely to be significantly
younger.

First, let's consider the essential form of the query we need to make. In MySQL, the code to
select females with ages between 55 and 65 would look something like this:

SELECT * FROM specs WHERE
ADDDATE(birthdate, INTERVAL 55 YEAR) < CURDATE() AND

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 423 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyc2V3aV9wbXJzYmgxN2MvMXJvX29zZnRtdV9idF9pZWxkLmd0YWpwXw--

ADDDATE(birthdate, INTERVAL 66 YEAR) > CURDATE() AND
gender = 'Female'

This uses CURDATE(), which returns the current date, as well as the MySQL ADDDATE
function, which is convenient for doing date arithmetic. For example, we use the code

ADDDATE(birthdate, INTERVAL 66 YEAR) > CURDATE()

to select specs with birthdates that give a date after the current date when you add 66 years
to them—which will be true for anyone age 65 or younger.
Next, we'll introduce a new aspect of the :conditions option in find. Recall from Section
10.3.1 that we can ensure safe SQL queries by using question marks as string place-holders;
for example, assuming a suitable params variable, we could use the following to find all
RailsSpace users of a particular gender:

Spec.find(:all, :conditions => ["gender = ?", params[:gender]])

The new syntax, which we will use in find_by_asl, uses a symbol and a full hash instead:

Spec.find(:all, :conditions => ["gender = :gender", params])

In this case, when building up the SQL query corresponding to this particular find, Rails
knows to insert an escaped-out version of params[:gender] in place of :gender.
Finally, the last piece of the puzzle is Ruby's array append syntax <, which we can demonstrate
using an irb session:

> irb

irb(main):001:0> a = []

=> []

irb(main):002:0> a << "foo"

=> ["foo"]

irb(main):003:0> a << "bar" << "baz"

=> ["foo", "bar", "baz"]

irb(main):004:0> a.join(" AND ")

=> "foo AND bar AND baz"

Note from line 003 that array appends can be chained together. We've also anticipated a key
step in building up the conditions by joining the array elements on " AND " in the final line.
Our strategy for find_by_asl is to make an array of strings with one element for each
potential part of the WHERE clause. We'll then join that array with " AND " for use
in :conditions. A call to find will then perform the query using the SQL string we've
constructed. Putting everything together leads to the following method:
file: app/models/spec.rb

Find by age, sex, location.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 424 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

def self.find_by_asl(params)

where = []

Set up the age restrictions as birthdate range limits in SQL.

unless params[:min_age].blank?

where << "ADDDATE(birthdate, INTERVAL :min_age YEAR) < CURDATE()"

end

 unless params[:max_age].blank?
 where << "ADDDATE(birthdate, INTERVAL :max_age+1 YEAR) > CURDATE()"
 end
 # Set up the gender restriction in SQL.
 where << "gender = :gender" unless params[:gender].blank?

 if where.empty?
 []
 else
 find(:all,
 :conditions => [where.join(" AND "), params],
 :order => "last_name, first_name")
 end
end

Note that we've elected to return an empty list if there are no restrictions; another option
would be to return all users in that case, but we think returning no users makes more sense.
We've also added the obligatory ordering by last name, first name in the call to find.
By the way, it's worth noting that our method for performing queries in find_by_sql
violates database independence, which has both advantages and disadvantages (see box).

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 425 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Getting database religion

In building up a where string for use in the :conditions option, we have used
MySQL-specific code such as ADDDATE, thereby violating database agnosticism
(and thus becoming database theists). This is not such a bad choice, when you
consider the alternative. To maintain database independence, we would have to
select all of the users and then apply the various conditions to the resulting Ruby
array. For a sufficiently small user base, this would be no problem, but it scales
horribly with the number of users, since it requires loading a significant part of
the database into memory for every call to find_by_sql. Building up a query
string, on the other hand, allows us to perform the query all at once in the database
—thereby making use of exactly what databases are good at.
In the present case, our judgment is that the benefit of breaking database-
independence outweighs the cost, but we should be mindful that we would have
to rewrite find_by_sql if we ever switched to a database other than MySQL.

With find_by_asl thus defined, the browse form is live, and searches by age and sex work
essentially as advertised (Fig. 11.8). What remains is to add location search—a decidedly
nontrivial task, but one we will nevertheless rise to accomplish.

Figure 11.8. Browsing our database by restricting spec parameters.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 426 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyc2V3X2xwMXNzYmgxOGMvMXJvX2V0cmF1c19fbF9pdGcucGo-

11.4. Location, Location, Location
In order to add the "L" in "A/S/L" to our browse feature, we need to add geographical
knowledge to the RailsSpace database. Once we've done that, we'll be in a position to make
the distance calculation needed to find all locations within a certain radius of a given zip
code. While we're at it, we'll use our newfound geographical prowess to add some polish to
the user display tables.

11.4.1. A Local Database of Geographic Data
We need to populate our local database with locations (in latitude and longitude) of various
zip codes. We'll use a free zip code database found at

http://www.populardata.com/

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 427 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

That data works fine on OS X and Linux, but you need to massage it a little bit to get it to
work on Windows; a Windows-friendly version of the data (as well as a copy of the original)
can be found at

http://www.RailsSpace.com/book/resources

After you download the file (text version), unzip it rename it to geo_data.csv. Since we
want all the RailsSpace databases (development, test, and eventually production) to have
the geographical information, we'll put the data-loading step in a migration; for convenience,
move geo_data.csv to the db/migrate directory. Then, create the migration, which
creates a table called geo_data together with the relevant columns:

> ruby script/generate migration CreateGeoData

exists db/migrate

create db/migrate/007_create_geo_data.rb

And here is the migration itself:
file: db/migrate/007_create_geo_data.rb

class CreateGeoData < ActiveRecord::Migration

def self.up

create_table :geo_data do |t|

t.column :zip_code, :string

t.column :latitude, :float

t.column :longitude, :float

t.column :city, :string

t.column :state, :string

t.column :county, :string

t.column :type, :string

end

add_index "geo_data", ["zip_code"], :name => "zip_code_optimization"

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 428 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

csv_file = "#{RAILS_ROOT}/db/migrate/geo_data.csv"

fields = '(zip_code, latitude, longitude, city, state, county)'

execute "LOAD DATA INFILE '#{csv_file}' INTO TABLE geo_data FIELDS " +

"TERMINATED BY ',' OPTIONALLY ENCLOSED BY \"\"\"\" " +

"LINES TERMINATED BY '\n' " + fields

end

def self.down

drop_table :geo_data

end

end

> rake db:migrate

(in /rails/rails_space)

== CreateGeoData: migrating ==

-- create_table("geo_data")

-> 0.0883s

-- execute("LOAD DATA INFILE '/rails/rails_space/config/../db/migrate/geo_data.csv' INTO

BLE geo_data FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY \"\"\"\" LINES TERMINATED BY
'\n' (zip_code, latitude, longitude, city, state, county, type)")

-> 0.9792s

== CreateGeoData: migrated (1.0684s) =======================================

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 429 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The migration is a bit advanced, and it would take us too far afield to go into all the details
[11], but once you've run it as above you should be able to see a promising table called
geo_data in the database (Fig. 11.9). You can see there that the geographical database
contains a correspondence between zip codes and latitude/longitude, as well as the city,
state, and even county of each location.

[11] It's worth noting, though, that through the execute command we can execute arbitrary SQL queries in a migration.

Figure 11.9. The geographical data in the database.

[View full size image]

Since we will want to manipulate GeoData objects using Active Record—using, in particular,
the find_by_zip_code method automatically created due to the zip_code database
column—we need to create a (virtually) blank model just to tell Rails that GeoDatum[12]

inherits from ActiveRecord::Base:

[12] Yes, the Rails inflector knows that the singular of GeoData is GeoDatum.

file: app/models/geo_datum.rb
class GeoDatum < ActiveRecord::Base

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 430 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyZGFfal9wLmRzZ2gxOWMvMWVvX19hYXBibHR0Z19p

With that, we're ready to do the actual distance search.

11.4.2. Using GeoData for Location Search
When last we left the browse action, we had optimistically called our new find function
find_by_asl, and now we can also lookup the zip code to find the city on the results page:
file: app/views/controllers/community_controller.rb

def browse

 @title = "Browse"
 return if params[:commit].nil?
 specs = Spec.find_by_asl(params)
 @pages, @users = paginate(specs.collect { |spec| spec.user })
end

Now that the RailsSpace database is geographically aware, it's time to add the "L".
Our strategy will be to take the user-submitted zip code, find the location in the geographical
database, and then select every spec whose zip code is within the given number of miles of
that location. If this sounds suspiciously like math, you're right: we'll have to use a formula
for calculating distances on a sphere as a function of latitude and longitude[13]. We'll start by
writing a function in the Spec model that returns a string appropriate for calculating the
distance between the given point and an arbitrary location (as identified by longitude and
latitude):

[13] Seriously, what were the chances that a couple of Caltech Ph.D.s could write a whole book without using at least a little math?

file: app/models/spec.rb

.

.

. private

Return SQL for the distance between a spec's location and the given point.

See http://en.wikipedia.org/wiki/Haversine_formula for more on the formula.

def self.sql_distance_away(point)

h = "POWER(SIN((RADIANS(latitude - #{point.latitude}))/2.0),2) + " +

"COS(RADIANS(#{point.latitude})) * COS(RADIANS(latitude)) * " +

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 431 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

"POWER(SIN((RADIANS(longitude - #{point.longitude}))/2.0),2)"

r = 3956 # Earth's radius in miles

"2 * #{r} * ASIN(SQRT(#{h}))"

end

end

As noted in the comments, this uses the haversine formula for calculating distances on sphere,
which can be found (among other places) at

http://en.wikipedia.org/wiki/Haversine_formula

We're now ready to add distance search to find_by_asl. We can get the location using
GeoDatum.find_by_zip_code and then add the requirement that the (SQL) distance
away is less than or equal to the miles supplied through the browse form:
file: app/models/spec.rb

Find by age, sex, location.

def self.find_by_asl(params)

where = []

.

.

. where << "gender = :gender" unless params[:gender].blank?

Set up the distance restriction in SQL.

zip_code = params[:zip_code]

unless zip_code.blank? and params[:miles].blank?

location = GeoDatum.find_by_zip_code(zip_code)

distance = sql_distance_away(location)

where << "#{distance} <= :miles"

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 432 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

if where.empty?

[]

else

find(:all,

:joins => "LEFT JOIN geo_data ON geo_data.zip_code = specs.zip_code",

:conditions => [where.join(" AND "), params],

:order => "last_name, first_name")

end

end

By the way, if you were nervous about the appearance of latitude in
sql_distance_away, that's a good sign—after all, the Spec model has no such column,
so there's no way such a query could work. The solution, as you might infer from the find
above, is to join the geo_data and specs tables, which effectively endows each spec with
latitude and longitude attributes. So far in this book, we've used lots of joins, but they've
always been implicit since Active Record handles the details for us; in this case, we need an
explicit join in order to do the age, sex, and location select all in one step. Moreover, we want
to find users by age and gender even if the zip code is blank, which means we need a specific
kind of operation called a left join[14]—with an ordinary join, a search for female users, say,
would return only those users who specify a zip code.

[14] See, e.g., http://www.w3schools.com/sql/sql_join.asp, or do a web search for SQL join to get more information on the different types of joins.

With the location query string added in find_by_asl, we can finally bask in the glory of
being able to find all the youngest female RailsSpace users within 250 miles of Caltech (Fig.
11.10). Oops—well, that's pretty much what we expected. Fine—how about the old men
(Fig. 11.11)? Yup, that's the Caltech we know and love!

Figure 11.10. All female RailsSpace users between the ages of 50 and 65 within 250 miles of Caltech.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 433 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://www.w3schools.com/sql/sql_join.asp
http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFybF9sd2Vwb2FzX2gxMWMvMWZ1MG1fZXNsYmZyZV9pXy5hcGp0Z2w-

Figure 11.11. All male RailsSpace users between the ages of 65 and 90 within 250 miles of Caltech.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 434 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFybF9sZWJwc2VzX2gxMWMvMWZ1MWxyYV9fb213YV9pbHB0amcu

11.4.3. Location Names
You may have noticed in Fig. 11.11 that, as in the rest of the nonempty search results in this
chapter, the location is identified by zip code alone. In real life, we expect that many users
would elect to type in their city and state as well, but—now that we have a geographical
database—it would be nice to fill in those fields automatically based on zip code. That's the
aim of this section.
Our first step is to polish the city name strings, which (as you can see from Fig. 11.9) are
currently ALL CAPS; we need a way to convert, e.g., LOS ANGELES to Los Angeles. To do
this, we'll add a couple of (very closely related) functions to the String class to capitalize each
word in a space-separated string:
file: lib/string.rb

class String

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 435 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

.

Capitalize each word (space separated).

def capitalize_each

 space = " "
 split(space).each{ |word| word.capitalize! }.join(space)
 end

 # Capitalize each word in place.
 def capitalize_each!
 replace capitalize_each
 end
end

Note in the second function capitalize_each! that we use the replace function, which
is a special Ruby function to replace self with another object (thereby mutating it); in this
case, the given string (self) gets replaced by the result of capitalize_each.
It's important to emphasize that the Ruby capitalize! method (on which
capitalize_each relies) converts both los and LOS to Los, so that the all-caps city
names will be properly converted:

> ruby script/console

Loading development environment.

>> "LOS ANGELES".capitalize_each

=> "Los Angeles"

After restarting the development webserver to load the changes to string.rb, we'll be
ready to look up the city and state based on zip code and then format the city name
appropriately:
file: app/models/spec.rb

Return a sensibly formatted location string.

def location

if not zip_code.blank? and (city.blank? or state.blank?)

lookup = GeoDatum.find_by_zip_code(zip_code)

if lookup

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 436 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

self.city = lookup.city.capitalize_each if city.blank?

self.state = lookup.state if state.blank?

end

end

[city, state, zip_code].join(" ")

end

We use the test if lookup since our database doesn't have city/state values for all zip
codes. Note that we don't override the user-defined city and state if they're already present;
we'll trust our users enough to give them the power to trump the data in our geographic
database[15].

[15] One of the strip of interesting session not in the bases authors once lived in 90048, which shows up as West Hollywood in many databases but is actually located in the
city of Los Angeles.

Having city and state in addition to zip code really fleshes out the search results, as seen in
Fig. 11.12.

Figure 11.12. Browse results with city and state lookup.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 437 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyd3NvdHlwYWlzX2gxMWMvMWJyMmNfX2V0c2V0X19pYWpsZ3AudA--

11.4.4. Adding Browse Validation
There's only one problem left with the RailsSpace browse page: putting in invalid data breaks
the form rather badly (Fig. 11.13). This is the first time we've had to validate a form that wasn't
simply the display for a model, so instead of using built-in model validations we have to do
things (mostly) by hand.

Figure 11.13. Browsing for "foo" instead of integers.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 438 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyd3NvdG9wbHJzX2gxMWMvMWJyM2VyXy5yX2Vhal9pcGc-

The validations themselves are fairly simple. We want to verify that the maximum and
minimum ages are valid integers, that the number of miles is a valid floating point number,
and that the zip code is correctly formatted and exists in our database. We'll create a Spec
model object, to which we will attach the errors, so that we can display them using
error_messages_for('spec').
It will be helpful when validating the input to have methods to detect invalid integers and
floats. We'll add relevant methods to the Object class, taking advantage of Ruby's policy of
raising an ArgumentError exception for a failed numerical conversion:

> irb

irb(main):001:0> Integer("foo")

ArgumentError: invalid value for Integer: "foo"

from (irb):1:in 'Integer'

from (irb):1

irb(main):002:0> Float("bar")

ArgumentError: invalid value for Float(): "bar"

from (irb):2:in 'Float'

from (irb):2

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 439 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

This behavior suggest the following tests for valid ints and floats, using the same
begin...rescue syntax we used in Section 11.1.5 to catch the Ferret exception:
file: lib/object.rb

class Object

Return true if the object can be converted to a valid integer.

def valid_int?

begin

Integer(self)

true

rescue ArgumentError

false

end

end

Return true if the object can be converted to a valid float.

def valid_float?

begin

Float(self)

true

rescue ArgumentError

false

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 440 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

end

By the way, we put these methods in the Object class (which is the base class for all Ruby
objects) rather than in String because we want to be able to test nil; as it turns out,
nil.valid_int? is true (Integer(nil) == 0) and nil.valid_float? is false
(Float(nil) raises an ArgumentError exception).
In order for these new functions to be loaded, we need to add a line to the Application helper:
file: app/helpers/application_helper.rb

module ApplicationHelper

require 'string'

require 'object'

.

.

.

Then, restart the web server so that the new Object functions will be included.
In order to catch the form entry errors, we'll define a function called valid_input? and
then wrap find_by_asl and pagination inside if valid_input?:
file: app/views/controllers/community_controller.rb

def browse

@title = "Browse"

return if params[:commit].nil?

if valid_input?

specs = Spec.find_by_asl(params)

@pages, @users = paginate(specs.collect { |spec| spec.user })

end

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 441 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Of course, we have to write valid_input?, which is reasonably long but is straightforward.
As mentioned above, we first create a new spec, on which we will accumulate errors for
display in the view. We then march through the different requirements for valid input, adding
an error for each one that fails. The only mildly tricky part is the use of @spec.valid? to
verify the zip code format; this just piggybacks on the zip code validation we already built.
The full function appears as follows:
file: app/views/controllers/community_controller.rb

.

.

.

private

Return true if the browse form input is valid, false otherwise.

def valid_input?

@spec = Spec.new

Spec validation (with @spec.valid? below) will catch invalid zip codes.

zip_code = params[:zip_code]

@spec.zip_code = zip_code

There are a good number of zip codes for which we have no information.

location = GeoDatum.find_by_zip_code(zip_code)

if @spec.valid? and not zip_code.blank? and location.nil?

@spec.errors.add(:zip_code, "does not exist in our database")

end

The age strings should convert to valid integers.

unless params[:min_age].valid_int? and params[:max_age].valid_int?

@spec.errors.add("Age range")

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 442 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

The zip code is necessary if miles are provided.

miles = params[:miles]

if miles and not zip_code

@spec.errors.add(:zip_code, "can't be blank")

end

The number of miles should convert to a valid float.

unless miles.nil? or miles.valid_float?

@spec.errors.add("Location radius")

end

The input is valid iff the errors object is empty.

@spec.errors.empty?

end

Note that a line such as @spec.errors.add("Location radius") simply leads to an
error string of the form "Location radius is invalid", while @spec.errors.add
(:zip_code, "can't be blank") gives the error string "Zip code can't be
blank".
The code as it stands is already sufficient to protect our form from invalid input, but it would
be inconsiderate not to tell our users what the problems are. Unfortunately, if we simply use
the code

<%= error_messages_for('spec') %>

as we have in previous chapters, we'll get error messages like "2 errors prohibited this spec
from being saved", which would be confusing in the context of our browse form—we're
browsing for users, not trying to save a spec. The solution involves using the sub string
method, which simply substitutes one string for another[16]:

[16] The closely related global substitution method gsub is also useful; where sub replaces only the first occurrence of a particular string, gsub replaces all of them.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 443 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

> irb

irb(main):001:0> s = "foo bar baz"

=> "foo bar baz"
irb(main):002:0> s.sub("baz", "quux")
=> "foo bar quux"

Applying this idea to the browse view yields the following:
file: app/views/community/browse.rhtml

<%= error_messages_for('spec').sub('prohibited this spec from being saved',

'occurred') %>

<%= render :partial => "browse_form" %>

<%= render :partial => "result_summary" %>

<%= render :partial => "user_table" %>

This way, we get errors of the form "3 errors occurred" (Fig. 11.14), which makes a lot more
sense.

Figure 11.14. Browse form with a nice description of the errors.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 444 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyd3Nvbm9wYXJzX2gxMWMvMWJyNGVyX2RyX2VobF9pZWxkLmd0YWpwXw--

11.4.5. The Final Community Home Page
Having built the index, search, and browse pages, we'll end by adding the browse partial to
make the RailsSpace community page a one-stop shop for finding RailsSpace users (Fig.
11.15):
file: app/views/community/index.rhtml

<h2><%= @title %></h2>

<fieldset>

<legend>Alphabetical Index</legend>

<% @letters.each do |letter| %>

<% letter_class = (letter == @initial) ? "letter_current" : "letter" %>

<%= link_to(letter, { :action => "index", :id => letter },

:class => letter_class) %>

<% end %>

<br clear="all" />

</fieldset>

<%= render :partial => "result_summary" %>

<%= render :partial => "user_table" %>

<% if @initial.nil? %>

<%= render :partial => "browse_form" %>

<%= render :partial => "search_form" %>

<% end %>

Figure 11.15. The final community page with index, browse, and search.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 445 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFybXVtX2lweHlzX2gxMWMvMWNvNXRuaWZfZG5laV9pbmFhdHBsXy5namw-

12. Avatars

Now that we've added a community listing, searching, and browsing, RailsSpace users can
find each other, but the profiles they find are rather plain. In this chapter, we take the first
step toward improving this situation by adding an avatar image upload so that users have a
visual way to represent themselves on their profiles. Future enhancements include a friends
listing (Chapter 14) and a blog (Chapters 15 and 16).
In the context of computers, an avatar is an image or other graphical representation of a
particular person[1]. On RailsSpace, the avatar will simply be an uploaded image. It can be a
picture of the user, but it doesn't have to be; any image that expresses the user's personality
will do. We'll put the avatar on the user hub and profile, and later we'll use a thumbnail version
on the friends list (Chapter 14) and on blog comments (Chapter 16). Accomplishing all this
will require understanding image uploads in Rails, as well as learning how to use Ruby to
communicate with the underlying filesystem.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 446 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

[1] In Hinduism, an avatar is the manifestation of a deity in human or animal form.

12.1. Preparing for Avatar Upload
We will be storing avatar images as files on the server filesystem (which will be the local
machine during development). It is possible to store the images in the database (as BLOBs,
or binary large objects), but since it doesn't makes much sense to sort a column by images,
or to join them to other tables, we don't get much in the process[2]. Moreover, filesystems are
highly optimized to deliver static content such as images, while database connections are
potentially expensive. Finally, we will be using a program called ImageMagick to convert
uploaded images to a sensible size, which will involve creating files on the filesystem anyway.

[2] We would gain a centralized data store, which we argued in Section 6.1.1 is a Good Thing in the context of sessions, but in the case of images we could simply use NFS
(Network File System) to make the image directory network-accessible. It would be harder to use the same trick for sessions since we would have to figure out how to tell
Rails to use the network drive, whereas with images we have complete control over where the files get written.

This design decision does involve some extra effort on our part, though, since Rails (through
Active Record) is particularly optimized for database-based storage. Our first task, then, is to
trick Active Record into using the file system. Then we will be in a position to make the Avatar
controller and views to handle the image upload itself.

12.1.1. Adapting a Model
As with the other models in RailsSpace, we want the Avatar model to be able to create new
objects, perform validations on them, and save them if the validations pass. Unlike our other
models, though, the Avatar model won't live in the database, so we won't create it using
generate. Instead, we'll create the avatar files by hand. We'll start by subclassing
ActiveRecord::Base[3] and making a custom initialize function:

[3]Section 12.2.3 explains exactly what Active Record buys us in the context of the Avatar model.

file: app/models/avatar.rb
class Avatar < ActiveRecord::Base

Image directories

URL_STUB = "/images/avatars"

DIRECTORY = File.join("public", "images", "avatars")

def initialize(user, image = nil)

@user = user

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 447 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

@image = image

Dir.mkdir(DIRECTORY) unless File.directory?(DIRECTORY)

end

def exists?

File.exists?(File.join(DIRECTORY, filename))

end

def exist?

exists?

end

def url

"#{URL_STUB}/#{filename}"

end

def thumbnail_url

"#{URL_STUB}/#{thumbnail_name}"

end

private

Return the filename of the main avatar.

def filename

"#{@user.screen_name}.png"

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 448 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

Return the filename of the avatar thumbnail.

def thumbnail_name

"#{@user.screen_name}_thumbnail.png"

end

end

Here we've used Dir.mkdir to make a directory for images unless it already exists, and
we've added an exists? method to test for avatar existence using File.exists?[4]. We've
also included some utilities to return the avatar URLs, together with private functions for the
avatar filenames (which are based on the user screen names). As in Section 10.2.2, we make
use of File.join to build up the file paths. (We hard-code forward slashes for the URLs
since URLs always use forward slashes.)

[4] Ruby provides the synonyms exist? and exists? for files, so we've done the same for avatars. We tend to prefer the plural version, since it sounds more like English.

Note that we've made the image optional when creating an avatar by using image =
nil in initialize; when saving avatars, we will of course need an image, but when testing
for avatar existence using

avatar.exists?

or returning the avatar URL there's no need for the avatar to be initialized with an image[5].

[5] If you're wondering what an "image" is in this context—is it a file, or maybe some other data structure?—you're ahead of the game. The answer is, it depends; see Section
12.2.2 for more detail.

Before moving on to avatar upload, we need to do one more thing: add an avatar to each
user by including one in the User model (just put it anywhere above the private keyword):
file: app/models/user.rb

.

.

.

def avatar

Avatar.new(self)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 449 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

.

.

.

This construct gives us behavior much like has_one :avatar would if the avatars were
stored in the database. For example, we can write things like

@user.avatar.exists?

to see if a particular user already has an avatar.
There is much to add to this model—we currently have no way of actually saving avatars, for
example—but what we have presently is enough to build the pages for uploading and
displaying avatars.

12.1.2. Avatar Upload Page
We'll be giving RailsSpace users the ability upload and delete avatars, which suggests
creating a controller for these actions:

> ruby script/generate controller Avatar index upload delete

exists app/controllers/

exists app/helpers/

create app/views/avatar

exists test/functional/

create app/controllers/avatar_controller.rb

create test/functional/avatar_controller_test.rb

create app/helpers/avatar_helper.rb

create app/views/avatar/index.rhtml

create app/views/avatar/upload.rhtml

create app/views/avatar/delete.rhtml

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 450 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Following our usual practice, we've included an index page, which in this case simply
redirects to the user hub.
Initially the Avatar controller will be simple, with the aforementioned redirect along with a
before filter to protect the avatar actions:
file: app/controllers/avatar_controller.rb

class AvatarController < ApplicationController

before_filter :protect

def index

redirect_to hub_url

end

def upload

@title = "Upload Your Avatar"

@user = User.find(session[:user_id])

end

def delete

end

end

With the Avatar model and controller thus defined, we're now in a position to make the
upload page. In order to handle image uploads, the form needs to use a multipart encoding
[6] and a file input field. As a result, the HTML we're aiming for looks something like this:

[6]multipart/form-data is the MIME type for file uploads. MIME types are general standards for data transmission with their origins in email (MIME stands for
Multipurpose Internet Mail Extensions).

<form action="upload" enctype="multipart/form-data" method="post">

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 451 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

<input id="avatar_image" name="avatar[image]" size="30" type="file" />

.

.

.

</form>

We can arrange for Rails to construct such a form by passing the option :multipart =>
true to form_tag and then using the Rails file_field tag to generate the file upload
field:
file: app/views/avatar/upload.rhtml

<h2>Avatar</h2>

<% form_tag("upload", :multipart => true) do %>

<fieldset>

<legend><%= @title %></legend>

 <% if @user.avatar.exists? %>
 <div class="form_row">
 <label for="current_avatar">Avatar:</label>
 <%= avatar_tag(@user) %>
 </div>
 <% end %>
 <div class="form_row">
 <label for="new_avatar">New Avatar:</label>
 <%= file_field "avatar", "image" %>
 </div>

 <%= submit_tag "Upload Avatar", :class => "submit" %>
</fieldset>
<% end %>

The code <%= file_field "avatar", "image" %> generates the HTML

<input id="avatar_image" name="avatar[image]" size="30" type="file" />

Note that the upload form uses the avatar object attached to the @user instance variable
to see if an avatar exists, displaying it if it does. We've also used the avatar_tag function,
defined in avatar_helper.rb, which relies on the Rails image_tag helper function:
file: app/helpers/avatar_helper.rb

module AvatarHelper

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 452 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Return an image tag for the user avatar.

def avatar_tag(user)

image_tag(user.avatar.url, :border => 1)

end

Return an image tag for the user avatar thumbnail.

def thumbnail_tag(user)

image_tag(user.avatar.thumbnail_url, :border => 1)

end

end

We've added a thumbnail_tag helper function while we were at it. The avatar_tag
function won't get called until there's actually an avatar uploaded successfully (Section
12.2.2), but this way once there is an avatar it will show up automatically.
Since we plan to show avatars on profiles and on the user hub, we should include the Avatar
helper in the corresponding controllers:
file: app/controller/profile_controller.rb

class ProfileController < ApplicationController

helper :avatar

.

.

.

end

and
file: app/controllers/user_controller.rb

class UserController < ApplicationController

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 453 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

include ApplicationHelper

helper :profile, :avatar

.

.

.

end

As it currently stands, with no avatar present, the upload view produces the upload form
shown in Fig. 12.1.

Figure 12.1. The initial avatar upload page.

[View full size image]

12.1.3. An Avatar Partial
Since we've anticipated the imminent creation of avatars by including an avatar tag on the
upload page, let's put avatar tags on the profile and the hub while we're at it. The two cases
are similar enough that (as in the case of the FAQ) we'll define a sidebar box partial:
file: app/views/avatar/_sidebar_box.rhtml

<div class="sidebar_box">

<h2>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 454 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyaWF0cHRwdXZzaWgxMWMvMm5pX2FhX2xhcmxfb19pYWxkLmd0YWpwXw--

Avatar

<% unless hide_edit_links? %>

<%= link_to "(edit)", :controller => "avatar", :action => "upload" %>

 <% end %>
 <br clear="all" />
 </h2>
 <div class="sidebar_box_contents">
 <% if @user.avatar.exists? %>
 <%= avatar_tag(@user) %>
 <% elsif not hide_edit_links? %>
 No avatar yet?
 <%= link_to "Upload one!", :controller => "avatar",
 :action => "upload" %>

 <% end %>
 </div>
</div>

As in the case of the FAQ, hide_edit_links? handles the differences between the hub
and the profile.
On the profile, we'll display the avatar in the upper left:
file: app/views/profile/show.rhtml

<div id="left_column">

<%= render :partial => 'avatar/sidebar_box' %>

<%= render :partial => 'faq/sidebar_box', :collection => Faq::FAVORITES %>

</div>

.

.

.

The addition to the hub is virtually identical:
file: app/views/user/index.rhtml

<div id="left_column">

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 455 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<div class="sidebar_box">

...basic user info...

</div>

<%= render :partial => 'avatar/sidebar_box' %>

.

.

.

With the partial as presently defined, this leads to a friendly message with a link to the avatar
upload page (Fig. 12.2).

Figure 12.2. The user hub with a link to avatar upload.

[View full size image]

12.2. Manipulating Avatars
We're now ready to complete the avatar upload by writing the upload action. Superficially,
it looks exactly the same as it would if avatars were stored in the database:
file: app/controllers/avatar_controller.rb

def upload

@title = "Upload Your Avatar"

@user = User.find(session[:user_id])

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 456 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyYXZfYWxwX3JzaGgxMmMvMnViX2FpdGxfbmFrdF9pLmpncA--

if param_posted?(:avatar)

image = params[:avatar][:image]

@avatar = Avatar.new(@user, image)

if @avatar.save

flash[:notice] = "Your avatar has been uploaded."

redirect_to hub_url

end

end

end

The key here is @avatar.save, which looks just like an Active Record save method but will
actually save the avatar (along with a thumbnail) to the filesystem instead of the database.
Writing this method is the principal aim of this section.

12.2.1. ImageMagick and Convert
When accepting image uploads, we have to take into account the possibility that our users
will upload very large images, or even try to insert malicious code into the site to compromise
our system. We can guard against these possibilities by converting image uploads to a
standard size and format. (As implied by the .png file names in Section 12.1.1, we plan to
use PNG (pronounced "ping"), the Portable Network Graphics format.) To that end, we'll use
the convert command-line utility provided by ImageMagick (see box). Since convert is
a regular executable living on the computer, by making a system call from within Rails we
can call it in the same way that we would from the command line.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 457 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

ImageMagick for your graphick

ImageMagick is a powerful package for manipulating images that includes
(among other things) the remarkable convert command-line utility, which we
will use to resize uploaded avatar images and convert them to a standard format.
If you're using OS X or Linux, the chances are good that ImageMagick is already
installed on your system; you can check by running

> which convert

If ImageMagick is not present, or if you're running Windows, download and install
it from the ImageMagick website at

http://www.imagemagick.org/script/binary-releases.php

You might also like to look into RMagick, a Ruby interface for ImageMagick. The
installation and use of RMagick is much more complicated than ImageMagick
alone, so we have elected to keep things simple by using convert directly.

We can demonstrate the usage for convert by converting the standard Rails icon
rails.png (which comes with every Rails installation). For example, suppose we wanted
to enlarge the image so that the longest side is 500 pixels (keeping the same aspect ratio as
the original); we could accomplish this with the following command[7]:

[7] Be warned: if you are using Windows you'll have to use the full path name to convert, such as "C:\Program Files\ImageMagick-6.3.1-Q16\convert".
Otherwise, Windows will try to execute an entirely different (and unrelated) convert function.

> convert public/images/rails.png -resize 500x500 tmp/big.png

In practice, of course, what we really want to do is keep an image from being too big, so the
geometry specification should be less than 500x500:

> convert public/images/rails.png -resize 240x300 tmp/normal.png

This command will shrink down a large image so that it's at most 240x300, but it will also
enlarge a small image such as rails.png, which probably isn't what we want for avatars.
Happily, convert comes with many options, including one to handle the case at hand;
simply append a right angle bracket (>) at the end of the size specification to prevent
enlarging:

> convert public/images/rails.png -resize "240x300>" tmp/normal.png

Note that we put the geometry specification in quotes since > is the special "redirect" shell
character.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 458 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Our strategy for using convert in the context of Rails is to use the Ruby function system,
which executes commands as if they were typed at a command line. For example, to view
the files in a particular directory on a Windows machine, you could call system in irb[8]:

[8] Run system("ls -l") on Mac or Linux for a similar result.

irb(main):001:0> system("dir")

Volume in drive C has no label.

Volume Serial Number is D426-147F

Directory of C:\Documents and Settings\rails\rails_space

12/12/2006 08:30 PM <DIR> .

12/12/2006 08:30 PM <DIR> ..

09/07/2006 09:47 AM 447 .project

09/07/2006 09:47 AM <DIR> app

09/07/2006 09:47 AM <DIR> components

12/01/2006 09:09 PM <DIR> config

09/07/2006 12:34 PM <DIR> db

10/18/2006 08:47 AM 406 demo.rb

09/07/2006 09:47 AM <DIR> doc

12/06/2006 09:56 AM <DIR> index

11/01/2006 09:04 PM <DIR> lib

09/07/2006 12:36 PM <DIR> log

12/14/2006 04:12 PM <DIR> public

09/07/2006 09:47 AM 307 Rakefile

09/07/2006 09:47 AM <DIR> script

12/12/2006 07:18 PM <DIR> test

12/15/2006 10:18 AM <DIR> tmp

09/07/2006 09:47 AM <DIR> vendor

3 File(s) 1,160 bytes

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 459 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

15 Dir(s) 1,156,882,432 bytes free

This means that, inside the Avatar model, we can use a command like

system("convert ...")

to do our image conversion.
Before we do this, though, we have to take into account that the location of the convert
executable is platform-dependent, so before moving on to the save method we'll make a
short (private) utility function to return a string representing the location of convert:
file: app/models/avatar.rb

.

.

.

private

.

.

.

Return the (system-dependent) ImageMagick convert executable.

def convert

if ENV["OS"] = /Windows/

Set this to point to the right Windows directory for ImageMagick.

"C:\\Program Files\\ImageMagick-6.3.1-Q16\\convert"

else

"/usr/bin/convert"

end

end

.

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 460 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Note that we've used the OS environment variable and a regular expression match to see if
we're on a Windows machine[9]. With our custom convert method, the eventual system call
to the underlying convert executable will look something like this:

[9] On Macintosh systems, convert is sometimes located in /usr/local/bin; in this case, the simplest solution is probably to make a symlink by running (as root) ln
-s /usr/local/bin/convert/usr/bin. This way, convert will work on, e.g., both a Mac development machine and a Linux production server.

system("#{convert} ...")

The appropriate value of convert (with full pathname) will automatically be interpolated
into the string used for the system call.

12.2.2. The save Method
Now that we know how to convert images, we come finally to the Avatar save method.
save itself is somewhat of an anticlimax, since we push the hard work into an auxiliary
function called successful_conversion?:
file: app/models/avatar.rb

class Avatar < ActiveRecord::Base

Image sizes

IMG_SIZE = '"240x300>"'

THUMB_SIZE = '"50x64>"'

.

.

.

Save the avatar images.

def save

successful_conversion?

end

private

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 461 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

.

.

Try to resize image file and convert to PNG.

We use ImageMagick's convert command to ensure sensible image sizes.

def successful_conversion?

Prepare the filenames for the conversion.

source = File.join("tmp", "#{@user.screen_name}_full_size")

full_size = File.join(DIRECTORY, filename)

thumbnail = File.join(DIRECTORY, thumbnail_name)

Ensure that small and large images both work by writing to a normal file.

(Small files show up as StringIO, larger ones as Tempfiles.)

File.open(source, "wb") { |f| f.write(@image.read) }

Convert the files.

system("#{convert} #{source} -resize #{IMG_SIZE} #{full_size}")

system("#{convert} #{source} -resize #{THUMB_SIZE} #{thumbnail}")

File.delete(source) if File.exists?(source)

No error-checking yet!

return true

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 462 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

successful_conversion? looks rather long, but it's mostly simple. We first define file
names for the image source, full-size avatar, and thumbnail, and then we use the system
command and our convert method to create the avatar images. We don't need to create
the avatar files explicitly, since convert does that for us. At the end of the function, we
return true, indicating success, thereby following the same convention as Active Record's
save. This is bogus, of course, since the conversion may very well have failed; in Section
12.2.3 we'll make sure that successful_conversion? lives up to its name by returning
the failure status of the system command.
The only tricky part of successful_conversion? touches on a question we haven't yet
answered: what exactly is an "image" in the context of a Rails upload? One might expect that
it would be a Ruby File object, but it isn't; it turns out that uploaded images are one of two
slightly more exotic Ruby types: StringIO (string input-output) for images smaller than
around 15K and Tempfile (temporary file) for larger images. In order to handle both types,
we include the line

File.open(source, "wb") { |f| f.write(@image.read) }

to write out an ordinary file so that convert can do its business[10]. File.open opens a file
in a particular mode—"wb" for "write binary" in this case—and takes in a block in which we
write the image contents (@image.read) to the file. (After the conversion, we clean up by
deleting the source file with File.delete.)

[10]convert can actually work with tempfiles, but not with StringIO objects. Writing to a file in either case allows us to handle conversion in a unified way.

The aim of the next section is to add validations, but save already works as long as nothing
goes wrong. By browsing over to an image file (Fig. 12.3), we can update the hub with an
avatar image of our choosing (Fig. 12.4).

Figure 12.3. Browsing for an avatar image.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 463 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyZV9nLmVwdHdzaWgxM2MvMm1hX29fcmpzYWJscF9pZw--

Figure 12.4. The user hub after a successful avatar upload.

[View full size image]

12.2.3. Adding Validations
You may have been wondering why we bothered to make the Avatar model a subclass of
ActiveRecord::Base. The answer is that we wanted access to the error handling and
validation machinery provided by Active Record. There's probably a way to add this
functionality without subclassing Active Record's base class, but it would be too clever by
half, probably only serving to confuse readers of our code (including ourselves). In any case,
we have elected to use Active Record and its associated error object to implement
validation-style error-checking for the Avatar model.
The first step is to add a small error check to the successful_conversion? function. By
convention, system calls return false on failure and true on success, so we can test for a
failed conversion as follows:
file: app/models/avatar.rb

def successful_conversion?

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 464 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyYXZfcGFwcmpzaGgxNGMvdTJiX2FsdGdfdGEuX2k-

.

.

Convert the files.

img = system("#{convert} #{source} -resize #{IMG_SIZE} #{full_size}")

thumb = system("#{convert} #{source} -resize #{THUMB_SIZE} #{thumbnail}")

File.delete(source) if File.exists?(source)

Both conversions must succeed, else it's an error.

unless img and thumb

errors.add_to_base("File upload failed. Try a different image?")

return false

end

return true

end

Note that we have to use the return keyword so that the function returns immediately
upon encountering an error. Also note that we've used

errors.add_to_base

rather than simply errors.add as we have before, which allows us to add an error message
not associated with a particular attribute. In other words,

errors.add(:image, "totally doesn't work")

gives the error message "Image totally doesn't work", but to get an error message like "There's
no freaking way that worked" we'd have to use

errors.add_to_base("There's no freaking way that worked")

This validation alone is probably sufficient, since any invalid upload would trigger a failed
conversion, but the error messages wouldn't be very friendly or specific. Let's explicitly check
for an empty upload field (probably a common mistake), and also make sure that the

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 465 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

uploaded file is an image and doesn't exceed some maximum threshold (so that we don't
try to convert some gargantuan multi-gigabyte file). We'll put these validations in a new
function called valid_file?, and then call it from save:
file: app/models/avatar.rb

Save the avatar images.

def save

valid_file? and successful_conversion?

end

private

.

.

.

Return true for a valid, nonempty image file.

def valid_file?

The upload should be nonempty.

if @image.size.zero?

errors.add_to_base("Please enter an image filename")

return false

end

unless @image.content_type = /^image/

errors.add(:image, "is not a recognized format")

return false

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 466 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

if @image.size > 1.megabyte

errors.add(:image, "can't be bigger than 1 megabyte")

return false

end

return true

end

end

Here we've made use of the size and content_type attributes of uploaded images to
test for blank or non-image files[11]. We've also use the remarkable syntax

[11] The carat ^ at the beginning of the regular expression means "beginning of line" so that the image content type must begin with the string "image".

if @image.size > 1.megabyte

Does Rails really let you write 1.megabyte for one megabyte? Rails does.
Since we've simply reused Active Record's own error-handling machinery, all we need to do
to display error messages on the avatar upload page is to use error_messages_for as
we have everywhere else in RailsSpace:
file: app/views/avatar/upload.rhtml

<h2>Avatar</h2>

 <% form_tag("upload", :multipart => true) do %>
 <fieldset>
 <legend><%= @title %></legend>

 <%= error_messages_for 'avatar' %>
 .
 .
 .
<% end %>

Now when we submit (for example) a file with the wrong type, we get a sensible error message
(Fig. 12.5).

Figure 12.5. The error message for an invalid image type.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 467 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyYXJ0cmFwcmxzYWgxNWMvMnZhX3BkdW9vX19lcl9pXy5hcGp0Z2w-

12.2.4. Deleting Avatars
The last bit of avatar functionality we want is the ability to delete avatars. We'll start by adding
a delete link to the upload page (which is a sensible place to put it since that's where we end
up if we click "edit" on the user hub):
file: app/views/avatar/upload.rhtml

.

.

.

<%= avatar_tag(@user) %>

[<%= link_to "delete", { :action => "delete" },

:confirm => "Are you sure?" %>]

.

.

.

We've added a simple confirmation step using the :confirm option to link_to. With the
string argument as shown, Rails inserts the following bit of JavaScript into the link:

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 468 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

[delete]

This uses the native JavaScript function confirm to verify the delete request (Fig. 12.6). Of
course, this won't work if the user has JavaScript disabled; in that case the request will
immediately go through to the delete action, thereby destroying the avatar. C'est la vie.

Figure 12.6. Confirming avatar deletion with JavaScript.

[View full size image]

As you might expect, the delete action is very simple:
file: app/controllers/avatar_controller.rb

.

.

.

Delete the avatar.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 469 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyYXJ0ZWlwZG5zYWgxNmMvMnZhX29yY2xmbV9fZV9pdGxlLmd0YWpwXw--

def delete

user = User.find(session[:user_id])

user.avatar.delete

flash[:notice] = "Your avatar has been deleted."

redirect_to hub_url

end

end

This just hands the hard work off to the delete function, which is a method in the Avatar
model. The delete method simply uses File.delete to remove both the main avatar
and the thumbnail from the filesystem:
file: app/models/avatar.rb

.

.

.

Remove the avatar from the filesystem.

def delete

[filename, thumbnail_name].each do |name|

image = "#{DIRECTORY}/#{name}"

File.delete(image) if File.exists?(image)

end

end

private

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 470 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

We check to make sure that the file exists since we don't want to raise an error if the user
happens to hit the /avatar/delete action before creating an avatar.

12.2.5. Testing Avatars
Writing tests for avatars poses some unique challenges. Following our usual practice post-
Chapter 5, we're not going to include a full test suite, but will rather highlight a particularly
instructive test—in this case, a test of the avatar upload page (including the delete action).
Before even starting, we have a problem to deal with. All our previous tests have written to
a test database, which automatically avoid conflicts with the development and production
databases. In contrast, since avatars exist in the filesystem, we have to come up with a way
to avoid accidentally overwriting or deleting files in our main avatar directory. Rails comes
with a temporary directory called tmp, so let's tell the Avatar model to use that directory
when creating avatar objects in test mode:
file: app/models/avatar.rb

class Avatar < ActiveRecord::Base

.

.

 .
 # Image directories
 if ENV["RAILS_ENV"] == "test"
 URL_STUB = DIRECTORY = "tmp"
 else
 URL_STUB = "/images/avatars"
 DIRECTORY = File.join("public", "images", "avatars")
 end
 .
 .
 .

This avoids clashes with any files that might exist in public/images/avatars.
Our next task, which is considerably more difficult than the previous one, is to simulate
uploaded files in the context of a test. Previous tests of forms have involved posting
information like this:

post :login, :user => { :screen_name => user.screen_name,

:password => user.password }

What we want for an avatar test is something like

post :upload, :avatar => { :image => image }

But how do we make an image suitable for posting?

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 471 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The answer is, it's difficult, but not impossible. We found an answer on the Rails wiki (http://
wiki.rubyonrails.org/), and have placed the resulting uploaded_file function in the test
helper:
file: app/test/test_helper.rb

Simulate an uploaded file.

From http://wiki.rubyonrails.org/rails/pages/HowtoUploadFiles

def uploaded_file(filename, content_type)

t = Tempfile.new(filename)

t.binmode

path = RAILS_ROOT + "/test/fixtures/" + filename

FileUtils.copy_file(path, t.path)

(class << t; self; end).class_eval do

alias local_path path

define_method(:original_filename) {filename}

define_method(:content_type) {content_type}

end

return t

end

We are aware that this function may look like deep black magic, but sometimes it's important
to be able to use code that you don't necessarily understand—and this is one of those times.
The bottom line is that the object returned by uploaded_file can be posted inside a test,
and acts like an uploaded image in that context.
There's only one more minor step: copy rails.png to the fixtures directory so that we have
an image to test.

> cp public/images/rails.png test/fixtures/

Apart from the use of uploaded_file, the Avatar controller test is straightforward:
file: test/functional/avatar_controller_test.rb

require File.dirname(__FILE__) + '/../test_helper'

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 472 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://wiki.rubyonrails.org/
http://wiki.rubyonrails.org/

require 'avatar_controller'

Re-raise errors caught by the controller.

class AvatarController; def rescue_action(e) raise e end; end

class AvatarControllerTest < Test::Unit::TestCase

fixtures :users

def setup

@controller = AvatarController.new

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

@user = users(:valid_user)

end

def test_upload_and_delete

authorize @user

image = uploaded_file("rails.png", "image/png")

post :upload, :avatar => { :image => image }

assert_response :redirect

assert_redirected_to hub_url

assert_equal "Your avatar has been uploaded.", flash[:notice]

assert @user.avatar.exists?

post :delete

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 473 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

assert !@user.avatar.exists?

end

end

Running the test gives

> ruby test/functional/avatar_controller_test.rb

Loaded suite test/functional/avatar_controller_test

Started

.

Finished in 1.350276 seconds.

1 tests, 5 assertions, 0 failures, 0 errors

13. Email

In this chapter, we'll learn how to send email using Rails, including configuration, email
templates, delivery methods, and tests. In the process, we'll take an opportunity to revisit the
user login page in order to add a screen name/password reminder, which will serve as our
first concrete example of email. We'll then proceed to develop a simple email system to allow
registered RailsSpace users to communicate with each other—an essential component of
any social network. We'll see email again Chapter 14, where it will be a key component in the
machinery for establishing friendships between RailsSpace users.

13.1. Action Mailer
Sending email in Rails is easy with the Action Mailer package. Rails applies the MVC
architecture to email, with an Action Mailer class playing the part of model. Constructing a
message involves defining a method for that message—reminder, for example—which
defines variables needed for a valid email message such as sender, recipient, and subject.
The text of the message is a view, defined in an rhtml file. Using the method and the view,
Action Mailer synthesizes a delivery function corresponding to the name of the method (e.g.,

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 474 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

deliver_reminder for the reminder action), which can then be used in a controller to
send email based on user input.
The purpose of this section is to turn these abstract ideas into a concrete example by
configuring email and then implementing a screen name/password reminder.

13.1.1. Configuration
In order to send email, Action Mailer first has to be configured. The default configuration
uses SMTP (Simple Mail Transfer Protocol) to send messages, with customizable
server_settings[1]:

[1] This is true in Rails 1.2.1; in Rails 1.2.2, server_settings has been deprecated in favor of smtp_settings.

file: config/environment.rb
Include your application configuration below

.

.

.

ActionMailer::Base.delivery_method = :smtp

ActionMailer::Base.server_settings = {

:address => "smtp.example.com",

:port => 25,

:domain => "your_domain.com",

:authentication => :login,

:user_name => "your_user_name",

:password => "your_password",

}

You will need to edit the server settings to match your local environment, which will probably
involve using your ISP's SMTP server. For example, to use DSLExtreme (an ISP available in the
Pasadena area), we could use the following[2]:

[2] Many ISPs (though evidently not DSLExtreme) follow the pattern smtp-server.example.com.

file: config/environment.rb

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 475 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Include your application configuration below

.

.

.

ActionMailer::Base.delivery_method = :smtp

ActionMailer::Base.server_settings = {

:address => "smtp.dslextreme.com",

:port => 25,

:domain => "railsspace.com"

}

We've set up the domain parameter so that our messages will look like they come from
railsspace.com.
There's one more small change to make: since we will be sending email in the development
environment, we want to see errors if there are any problems with the mail delivery. This
involves editing the development-specific environment configuration file:
file: config/environments/development.rb

Raise Errors if the mailer can't send

config.action_mailer.raise_delivery_errors = true

Once you make a change in this file, you need to restart your webserver. Your system should
then be ready to send email.

13.1.2. Password Reminder
Currently, RailsSpace users who forget their screen names or passwords are out of luck. Let's
rectify that situation by sending users a helpful reminder when supplied with a valid email
address. We'll start by making a mailer for users. Unsurprisingly, Rails comes with a script for
generating them:

> ruby script/generate mailer UserMailer

exists app/models/

create app/views/user_mailer

exists test/unit/

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 476 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

create test/fixtures/user_mailer

create app/models/user_mailer.rb

create test/unit/user_mailer_test.rb

The resulting Action Mailer file, like generated Active Record files, is very simple, with a new
class that simply inherits from the relevant base class:
file: app/models/user_mailer.rb

class UserMailer < ActionMailer::Base

end

Inside this class, we need to create a method for the reminder. As noted above, adding a
reminder method to the User mailer results in the automatic creation of a
deliver_reminder function (attached to the UserMailer class). We will use this function
in the remind action in Section 13.1.3. The method itself is simply a series of instance variable
definitions:
file: app/models/user_mailer.rb

class UserMailer < ActionMailer::Base

def reminder(user)

@subject = 'Your login information at RailsSpace.com'

@body = {}

Give body access to the user information.

@body["user"] = user

 @recipients = user.email @from = 'RailsSpace <do-not-reply@railsspace.com>'
 end
 end

Action Mailer uses the instance variables inside reminder to construct a valid email
message. Note in particular that elements in the @body hash correspond to instance
variables in the corresponding view; in other words,

@body["user"] = user

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 477 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

gives rise to a variable called @user in the reminder view. In the present case, we use the
resulting @user variable to insert the screen name and password information into the
reminder template:
file: app/views/user_mailer/reminder.rhtml

Hello,

Your login information is:

Screen name: <%= @user.screen_name %>

Password: <%= @user.password %>

--The RailsSpace team

Since this is just an rhtml file, we can use embedded Ruby as usual.

13.1.3. Linking and Delivering the Reminder
We've now laid the foundation for sending email reminders; we just need the infrastructure
actually to send them. We'll start by making a general Email controller to handle the various
email actions on RailsSpace, starting with a remind action:

> ruby script/generate controller Email remind

exists app/controllers/

exists app/helpers/

create app/views/email

exists test/functional/

create app/controllers/email_controller.rb

create test/functional/email_controller_test.rb

create app/helpers/email_helper.rb

create app/views/email/remind.rhtml

Next, we'll add a reminder link to the login page (Fig. 13.1):
file: app/views/user/login.rhtml

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 478 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

.

.

<p>

Forgot your screen name or password?

<%= link_to "Remind Me!", :controller => "email", :action => "remind" %>

</p>

<p>

Not a member? <%= link_to "Register now!", :action => "register" %>

</p>

Figure 13.1. The login page with screen name/password reminder.

[View full size image]

The remind view is a simple form_for:
file: app/views/email/remind.rhtml

<% form_for :user do |form| %>

<fieldset>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 479 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFybmRpal9wLl9zcmgxMWMvM2VtX2VhbXAxbF90Z19p

<legend><%= @title %></legend>

<div class="form_row">

<label for="email">Email:</label>

<%= form.text_field :email, :size => User::EMAIL_SIZE %>

</div>

<div class="form_row">

<%= submit_tag "Email Me!", :class => "submit" %>

</div>

</fieldset>

<% end %>

Now set @title in the Email controller:
file: app/controllers/email_controller.rb

class EmailController < ApplicationController

def remind

@title = "Mail me my login information"

end

end

With this, the remind form appears as in Fig. 13.2.

Figure 13.2. The email reminder form.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 480 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFybmRpal9wLl9zcmgxMmMvM2VtX2VhbXAybF90Z19p

Finally, we need to fill in the remind action in the Email controller. Previously, in the
login action, we used the verbose but convenient method

find_by_screen_name_and_password

In remind, we use the analogous find_by_email method:
file: app/controllers/email_controller.rb

class EmailController < ApplicationController

def remind

@title = "Mail me my login information"

if param_posted?(:user)

email = params[:user][:email]

user = User.find_by_email(email)

if user

 UserMailer.deliver_reminder(user)
 flash[:notice] = "Login information was sent."
 redirect_to :action => "index", :controller => "site"
 else
 flash[:notice] = "There is no user with that email address."
 end
 end
 end
end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 481 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The key novel feature here is the use of

UserMailer.deliver_reminder(user)

to send the message. Action Mailer passes the supplied user variable to the reminder
method and uses the result to construct a message, which it sends out using the SMTP server
defined in Section 13.1.1.
By default, Rails email messages get sent as plain text; see
http://wiki.rubyonrails.org/rails/pages/HowToSendHtmlEmailsWithActionMailer
for instructions on how to send HTML mail using Rails.

13.1.4. Testing the Reminder
Writing unit and functional tests for mail involves some novel features, but before we get to
that it's a good idea to do a test by hand. Log in as Foo Bar and change the email address to
(one of) your own. After logging out, navigate to the password reminder via the login page
and fill in your email address. The resulting reminder should show up in your inbox within a
few seconds; if it doesn't, double-check the configuration in config/environment.rb
to make sure that they correspond to your ISP's settings.
Even if you can't get your system to send email, automated testing will still probably work.
Unit and functional tests don't depend on the particulars of your configuration, but rather
depend on Rails being able to create UserMailer objects and simulate sending mail. The unit
test for the User mailer is fairly straightforward; we create (rather than deliver) a UserMailer
object and then check several of its attributes[3]:

[3] Feel free to ignore the private functions in this test file; they are generated by Rails and are needed for the tests, but you don't have to understand them. Lord knows we
don't.

file: test/unit/user_mailer_test.rb
require File.dirname(__FILE__) + '/../test_helper'

require 'user_mailer'

class UserMailerTest < Test::Unit::TestCase

fixtures :users

FIXTURES_PATH = File.dirname(__FILE__) + '/../fixtures'

CHARSET = "utf-8"

include ActionMailer::Quoting

def setup

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 482 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://wiki.rubyonrails.org/rails/pages/HowToSendHtmlEmailsWithActionMailer

@user = users(:valid_user)

@expected = TMail::Mail.new

@expected.set_content_type "text", "plain", { "charset" => CHARSET }

end

def test_reminder

reminder = UserMailer.create_reminder(@user)

assert_equal 'do-not-reply@railsspace.com', reminder.from.first

assert_equal "Your login information at RailsSpace.com", reminder.subject

assert_equal @user.email, reminder.to.first

assert_match /Screen name: #{@user.screen_name}/, reminder.body

assert_match /Password: #{@user.password}/, reminder.body

end

private

def read_fixture(action)

IO.readlines("#{FIXTURES_PATH}/user_mailer/#{action}")

end

def encode(subject)

quoted_printable(subject, CHARSET)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 483 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

end

The UserMailer.create_reminder method in the first line of test_reminder, like
the deliver_reminder method from Section 13.1.3, is synthesized for us by Rails. The
resulting UserMailer object has attributes corresponding to the different fields in an email
message, such as subject, to, and date, thereby allowing us to tests those attributes.
Unfortunately, these are not in general the same as the variables created in Section 13.1.2:
from comes from @from and subject comes from @subject, but to comes from
@recipients and date comes from @sent_on. These Action Mailer attributes are poorly
documented, but luckily you can guess them for the most part.
Let's go through the assertions in test_reminder. We use

reminder = UserMailer.create_reminder(@user)

to create a reminder variable whose attributes we can test. The to attribute,

reminder.to

is an array of recipients, so the first element is

reminder.to.first

which we test against @user.email. This test also introduces assert_match, which
verifies that a string matches a given regular expression—in this case, verifying that the
screen name and password lines appear in the reminder message body.
Running the test gives[4]

[4] If you are running Rails 1.2.2 or later, you will get a DEPRECATION WARNING when you run the email tests. To get rid of the warning, simply change
server_settings to smtp_settings in environment.rb.

> ruby test/unit/user_mailer_test.rb

Loaded suite test/unit/user_mailer_test

Started

.

Finished in 0.2634 seconds.

1 tests, 5 assertions, 0 failures, 0 errors

The functional test for the password reminder is a little bit more complicated. In particular,
the setup requires more care. In test mode, Rails doesn't deliver email messages; instead, it
appends the messages to an email delivery object, @emails. This list of emails has to be
cleared after each test is run, because otherwise messages would accumulate, potentially
invalidating other tests[5]. We accomplish this with a call to the clear array method in the
setup function:

[5] With only one test, it doesn't matter, but presumably we'll be adding more tests later.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 484 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

file: test/functional/email_controller_test.rb
require File.dirname(__FILE__) + '/../test_helper'

require 'email_controller'

Re-raise errors caught by the controller.

class EmailController; def rescue_action(e) raise e end; end

class EmailControllerTest < Test::Unit::TestCase

fixtures :users

def setup

@controller = EmailController.new

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

@emails = ActionMailer::Base.deliveries

@emails.clear

@user = users(:valid_user)

Make sure deliveries aren't actually made!

ActionMailer::Base.delivery_method = :test

end

.

.

.

We've added a line telling Rails that the delivery method is in test mode:

ActionMailer::Base.delivery_method = :test

This is supposed to happen automatically for tests, but on some systems we've found that
setting it explicitly is necessary to avoid actual mail delivery.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 485 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Since a succesful email reminder should add a single message to @emails, the test checks
that a message was "sent" by making sure that the length of the @emails array is 1:
file: test/functional/email_controller_test.rb

.

.

.

def test_password_reminder

post :remind, :user => { :email => @user.email }

assert_response :redirect

assert_redirected_to :action => "index", :controller => "site"

assert_equal "Login information was sent.", flash[:notice]

assert_equal 1, @emails.length

end

end

Running the test gives

> ruby test/functional/email_controller_test.rb

Loaded suite test/functional/email_controller_test

Started

.

Finished in 0.179272 seconds.

1 tests, 4 assertions, 0 failures, 0 errors

13.2. Double-Blind eMail System
In this section, we develop a minimalist email system to allow registered RailsSpace users to
communicate with each other. The system will be double-blind, keeping the email address
of both the sender and if the recipient private. We'll make an email form that submits to a

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 486 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

correspond action in the Email controller, which will send the actual message. In the body
of the email we'll include a link back to the same email form so that it's easy to reply to the
original message[6].

[6] We really ought to allow users to respond using their regular email account; unfortunately, since this involves setting up a mail server, it is beyond the scope of this book.

13.2.1. Email Link
We'll get the email system started by putting a link to the soon-to-be-written
correspond action on each user's profile. Since there is a little bit of logic involved, we'll
wrap up the details in a partial:
file: app/views/profile/_contact_box.rhtml

<% if logged_in? and @user != @logged_in_user %>

<div class="sidebar_box">

<h2>

Actions

<br clear="all" />

</h2>

<%= link_to "Email this user",

:controller => "email", :action => "correspond",

:id => @user.screen_name %>

</div>

<% end %>

We've put the link inside a list element tag in anticipation of having more contact actions
later (Section 14.2.1). Since it makes little sense to give users the option to email themselves,
we only show the sidebar box if the profile user is different from the logged-in user. To get
this to work, we need to define the @logged_in_user instance variable in the Profile
controller's show action:

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 487 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

file: app/controllers/profile_controller.rb
def show

@hide_edit_links = true

screen_name = params[:screen_name]

@user = User.find_by_screen_name(screen_name)

@logged_in_user = User.find(session[:user_id]) if logged_in?

if @user

.

.

 .
end

All we have left is to invoke the partial from the profile:
file: app/views/profile/show.rhtml

<div id="left_column">

<%= render :partial => 'avatar/sidebar_box' %>

<%= render :partial => 'contact_box' %>

.

.

.

13.2.2. Correspond and the Email Form
The target of the link in the previous section is the correspond action, which will also be
the target of the email form. The form itself will contain the two necessary aspects of the
message, the subject and body. In order to do some minimal error-checking on each
messages, we'll make a lightweight Message class based on Active Record, which has
attributes for the message subject and body:

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 488 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

file: app/models/message.rb
class Message < ActiveRecord::Base

attr_accessor :subject, :body

validates_presence_of :subject, :body

validates_length_of :subject, :maximum => DB_STRING_MAX_LENGTH

validates_length_of :body, :maximum => DB_TEXT_MAX_LENGTH

def initialize(params)

@subject = params[:subject]

@body = params[:body]

end

end

By overriding the initialize method, we avoid having to create a stub messages table
in the database[7].

[7] It's annoying that we have to inherit from Active Record just to get validations and error-handling—those functions don't have anything specifically to do with databases.
We've heard rumors about a proposed base class called Active Model, which would serve as a parent class for all Active Record-like classes. Someday we hope to be able
to use Active Model instead of Active Record in cases such as this one.

Since only registered users can send messages, we first protect the correspond action with
a before filter. We then use the Message class in correspond to create a Message object,
which we can then validate by calling the message's valid? method:
file: app/controllers/email_controller.rb

class EmailController < ApplicationController

include ProfileHelper

before_filter :protect, :only => ["correspond"]

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 489 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

def correspond

user = User.find(session[:user_id])

recipient = User.find_by_screen_name(params[:id])

@title = "Email #{recipient.name}"

if param_posted?(:message)

@message = Message.new(params[:message])

if @message.valid?

UserMailer.deliver_message(

:user => user,

:recipient => recipient,

:message => @message,

:user_url => profile_for(user),

:reply_url => url_for(:action => "correspond",

:id => user.screen_name)

)

flash[:notice] = "Email sent."

redirect_to profile_for(recipient)

end

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 490 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

end

We've packed a lot of information into the call to deliver_message, including a use of our
custom profile_for function from Section 9.4.3 (included via the line include
ProfileHelper at the top of the Email controller). We'll deal with the call to
deliver_message in the next section.
By creating a new Message object in the correspond action and including a call to
@message.valid?, we've arranged for Rails to generate error messages in the usual way,
which we can put on the corresponding form:
file: app/views/email/correspond.rhtml

<% form_for :message do |form| %>

<fieldset>

<legend><%= @title %></legend>

<%= error_messages_for 'message' %>

<div class="form_row">

<label for="subject">Subject:</label>

<%= form.text_field "subject", :size => 60 %>

</div>

<div class="form_row">

<label for="subject">Body:</label>

<%= form.text_area "body", :rows => 20, :cols => 60 %>

</div>

<%= submit_tag "Send", :class => "submit" %>

</fieldset>

<% end %>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 491 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

This way, if we leave the subject or body blank, we get sensible error messages (Fig. 13.3).

Figure 13.3. The email correspondence page with errors.

[View full size image]

13.2.3. Email Message
The task remains to complete the correspond action by defining a message method in
the User mailer so that UserMailer.deliver_message exists, along with a
message.rhtml view for the message itself.
Recall from Section 13.1.2 that

@body["user"] = user

makes a variable @user available in the reminder.rhtml view. It turns out that we can
also accomplish this by writing

@body = {"user" => user}

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 492 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyZXNyc2VwcmRzY2gxM2MvM29yX25yb19fcnBvYV9pbHB0amcu

or the even pithier

body user

In this last example, body is a Rails function that sets the @body variable. Similar functions
exist for the other mail variables, and together they make for an alternate way to define
methods in Action Mailer classes. This means that instead of writing

@subject = 'Your login information at RailsSpace.com'

@body = {}

Give body access to the user information.

@body["user"] = user

@recipients = user.email

@from = 'RailsSpace <do-not-reply@railsspace.com>'

we can write

subject 'Your login information at RailsSpace.com'

body {"user" => user}

recipients user.email

from 'RailsSpace <do-not-reply@railsspace.com>'

The argument to deliver_message in the correspond action above is a hash containing
the information needed to construct the message:

UserMailer.deliver_message(

:user => user,

:recipient => recipient,

:message => @message,

:user_url => profile_for(user),

:reply_url => url_for(:action => "correspond",

:id => user.screen_name)

)

In the User mailer message method, we'll receive this hash as a mail variable, which means
that we can fill in the message as follows:

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 493 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

file: app/models/user_mailer.rb
class UserMailer < ActionMailer::Base

.

.

.

def message(mail)

subject mail[:message].subject

from 'RailsSpace <do-not-reply@railsspace.com>'

recipients mail[:recipient].email

body mail

end

end

By writing

body mail

we automatically make everything in the mail hash available in the message template, with
an instance variable for each key; i.e.,

:user => user,

:recipient => recipient,

:message => @message,

:user_url => profile_for(user),

:reply_url => url_for(:action => "correspond",

:id => user.screen_name)

gives rise to the instance variables

@user, @recipient, @message, @user_url, @reply_url

in the message template.
Because all the relevant information is in the instance variables, the message template itself
is short. We first include a note at the top indicating the identity of the sender. The text of

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 494 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

the message follows, and the message ends with a link to the page needed to respond to
the sender:
file: app/views/user_mailer/message.rhtml

<%= @user.name %> at RailsSpace (<%= @user_urll %>) writes:

<%= @message.body %>

To reply to this message, go to:

<%= @reply_url %>

Note from Fig. 13.4 that the URL base in a test email is localhost:3000, the base for
development mode, which happens automatically when we use Rails functions like
url_for to generate our URLs. This is convenient since test emails link back to the local
machine rather than to the actual RailsSpace site.

Figure 13.4. A RailsSpace email sent by Foo Bar (in development mode).

[View full size image]

With that, the rudimentary RailsSpace email system is complete. At this point, you might
want to create a new user and try sending a test message to Foo Bar, which should go to you
(assuming that you edited Foo's email address in Section 13.1.4). Of course, that's no
substitute for real tests.

13.2.4. Testing Double-Blind eMail
In order to test the email interface, we need to create a second user to act as the recipient.
In anticipation of the introduction of friends in Chapter 14, we'll call this user friend and
put his information in the users.yml fixture file[8]:

[8] Note that this insertion requires re-numbering the 10 generated users so that their ids start at 5: id: <%= i + 3 %> becomes id: <%= i + 4 %>.

file: test/fixtures/users.yml
.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 495 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyX2V0cGFwbGpzdGgxNGMvZTNzX2lsYWdfdG0uX2k-

.

.

friend:

id: 4

screen_name: amigo

email: ami@example.com

password: Freund

Create 10 users so that searches can invoke pagination.

<% (1..10).each do |i| %>

user_<%= i %>:

id: <%= i + 4 %>

screen_name: user_<%= i %>

email: user_<%= i %>@example.com

password: foobar

<% end %>

.

.

.

We use recipient.name in the correspond action, which relies on a method in the Spec
model, so we also need to create a spec for the friend:
file: test/fixtures/specs.yml

.

.

.

friend_spec:

id: 3

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 496 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

user_id: 4

first_name: Dude

last_name: Dude

gender: Male

birthdate: 2000-01-01

occupation: Dude

city: Dude

state: CA

zip_code: 91125

In the User mailer test file, we need to include the fixtures and create the @user and
@friend instance variables. Then we can test the email interface by writing
test_message:
file: test/unit/user_mailer_test.rb

class UserMailerTest < Test::Unit::TestCase

fixtures :users, :specs

.

.

.

def setup

@user = users(:valid_user)

@friend = users(:friend)

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 497 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

.

end

.

.

.

def test_message

user_url = "http://railsspace.com/profile/#{@user.screen_name}"

reply_url = "http://railsspace.com/email/correspond/#{@user.screen_name}"

message = Message.new(:subject => "Test message",

:body => "Dude, this is totally rad!")

email = UserMailer.create_message(

:user => @user,

:recipient => @friend,

:message => message,

:user_url => user_url,

:reply_url => reply_url

)

assert_equal message.subject, email.subject

assert_equal @friend.email, email.to.first

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 498 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

assert_equal 'do-not-reply@railsspace.com', email.from.first

assert_match /#{message.body}/, email.body

assert_match /#{user_url}/, email.body

assert_match /#{reply_url}/, email.body

end

private

.

.

.

We've used assertions to verify several of the message attributes, including checking the
email for the message body, user URL, and reply URL[9].

[9] We hard-coded the two test URLs because we were unable to get profile_for and url_for to work in a unit test. Maybe you can do better.

Now there are two User mailer tests:

> ruby test/unit/user_mailer_test.rb

Loaded suite test/unit/user_mailer_test

Started

..

Finished in 0.180634 seconds.

2 tests, 11 assertions, 0 failures, 0 errors

In the Email controller functional test, we'll put the new friend to good use again in
test_correspond, which is similar to test_remind from Section 13.1.4:
file: test/functional/email_controller_test.rb

class EmailControllerTest < Test::Unit::TestCase

include ProfileHelper

fixtures :users, :specs

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 499 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

def setup

.

.

.

@user = users(:valid_user)

 @friend = users(:friend)
 # Make sure deliveries aren't actually made!
 ActionMailer::Base.delivery_method = :test
 end
 .
 .
 .
 def test_correspond
 authorize @user
 post :correspond, :id => @friend.screen_name,
 :message => { :subject => "Test message",
 :body => "Dude, this is totally rad!" }
 assert_response :redirect
 assert_redirected_to profile_for(@friend)
 assert_equal "Email sent.", flash[:notice]
 assert_equal 1, @emails.length
 end
end

By including ProfileHelper in the test class, we've arranged to use profile_for in the
line

assert_redirected_to profile_for(@friend)

With test_correspond added to our test suite, there are now two Email controller tests:

> ruby test/functional/email_controller_test.rb

Loaded suite test/functional/email_controller_test

Started

..

Finished in 0.110034 seconds.

2 tests, 8 assertions, 0 failures, 0 errors

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 500 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

14. Friendships

With the double-blind email system in place, we suppose that RailsSpace is now technically
a social network, but most real-world social networks worthy of the name give users a way
to select preferred members. Following tradition, we call such distinguished users friends.
Adding friends to RailsSpace is the goal of this chapter.
Friendships represent the most challenging data modeling problem we've encountered so
far. To solve it, we'll have to learn about simulated table names, foreign keys, and the
has_many database association. Adding and managing friendships will then take place
through both email and web interfaces. By the end of the chapter, we'll be in a position to
put a list of friends on the hub and user profile, making use of the avatar thumbnails from
Chapter 12.

14.1. Modeling Friendships
At first blush, modeling friends looks easy: just make a friends table for friends. If you start
to think about it, though, it's not clear what to put in such table—would each friend somehow
have a list of all the users he's friends with? That would seem to require storing a Ruby list in
the database, which seems dubious. Moreover, since friends are just users, a separate
friends table would be highly redundant. We could eliminate this redundancy by using
the users table itself, but we then have the strange situation of having a table somehow
refer to itself.
The way to cut this Gordian knot is to realize that we're missing an underlying abstraction:
fundamentally, what we need to model is not friends, but rather the friendship relationship
between users. This suggests creating a Friendship model, with each friendship consisting
of a pair of users.

14.1.1. Friendships in the Abstract
In order to discuss friendships meaningfully, we need a second example in addition to Foo
Bar. Let's call the new user Baz Quux (screen name bazquux)[1]. Creating friendships will
involve (say) Foo requesting a friendship with Baz, so that Baz will have a requested friendship
from Foo, and Foo will have a pending friendship with Baz. If Baz accepts Foo's request, the
friendship will be accepted, and they will officially be friends.

[1] Since friendship requests will happen through email, we suggest that you set the email addresses for both Foo Bar and Baz Quux to accounts you control.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 501 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

In terms of a database table structure, the discussion above suggests something like Fig.
14.1. On the left and right, we have users and friends tables, with a friendships table
in the middle connecting them. As noted above, having a separate friends table would
be terribly redundant, but we'd still like to make a distinction between users and friends
somehow. Rails lets us have our cake and eat it too by allowing us to fake a second table with
a name of our choice. In the next section, we'll show how to simulate a table called
friends while actually using the users table behind the scenes.

Figure 14.1. A sketch of the database tables needed to model friendships.

With the given table structure, each friendship will consist of two rows in the
friendships table. For example, a (potential) friendship between Foo (user id 1) and Baz
(user id 2) would look like Fig. 14.2; as indicated by the status column, the first row shows
that Foo has a pending friendship with Baz, while the second row shows that Baz has a
requested friendship from Foo. When a friendship is accepted, both status columns get set
to 'accepted'.

Figure 14.2. The two rows for a (potential) friendship between Foo (1) and Bar (2).

friendships
user_id friend_id status

1 2 'pending'

2 1 'requested'

It might seem wasteful to use two rows per friendship instead of one—we certainly thought
so at first—but this way we can use different statuses for each user/friend pair to indicate
who made the request and who received it. Even after a friendship is accepted, so that each
status is the same, having two rows makes selecting the friends for a particular user much
easier (Section 14.3.1).

14.1.2. Friendship Model
It's time now to take the abstract discussion above and make it concrete in the form of a
Friendship model. Fig. 14.1 suggests creating a friendships table with columns for both
user and friend (as identified by their ids), together with a column indicating the status of
the friendship. We'll also add a couple of columns to record the time for each friendship
request and acceptance. As usual, to get started we generate the Friendship model, but this
time with a twist:

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 502 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

> ruby script/generate model Friendship user_id:integer friend_id:integer \

status:string created_at:datetime accepted_at:datetime

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/friendship.rb

create test/unit/friendship_test.rb

create test/fixtures/friendships.yml

exists db/migrate

create db/migrate/011_create_friendships.rb

Here we've included the data model right on the command line, using the pattern
column:type to tell generate the columns in the friendships table. As a result, Rails
has generated the proper migration file for us:
file: db/migrate/008_create_friendships.rb

class CreateFriendships < ActiveRecord::Migration

def self.up

create_table :friendships do |t|

t.column :user_id, :integer

t.column :friend_id, :integer

t.column :status, :string

t.column :created_at, :datetime

t.column :accepted_at, :datetime

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 503 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

 def self.down
 drop_table :friendships
 end
end

Before moving on, run rake db:migrate as usual to update the database.
The status column is there to keep track of whether a particular friendship is pending,
requested, or accepted[2]. As discussed in Section 14.1.1, we'll plan to use the following strings
to track the status of user friendships, updating them if the status changes[3]:

[2] We could also keep track of declined friendship requests, but for now we'll just delete them instead.

[3] Those of you familiar with database normalization might be cringing at this point. Get over it.

'pending'
'requested'
'accepted'

The only potentially confusing column in the friendships table is friend_id, and
indeed of this column is at the heart of the trickery that makes the Friendship model work.
The crux of the problem is that the Friendship model naturally belongs_toeach user, one
of whom is "the user" and the other of whom is "the friend". Using both user_id and
friend_id in the Friendship data model allows us to distinguish between them as follows:
file: app/models/friendship.rb

class Friendship < ActiveRecord::Base

belongs_to :user

belongs_to :friend, :class_name => "User", :foreign_key => "friend_id"

validates_presence_of :user_id, :friend_id

end

This says that each friendship belongs to the first user and to the second user. By writing

belongs_to :friend, :class_name => "User", :foreign_key => "friend_id"

we tell Rails that we want to refer to the second user as a "friend", identified by the foreign
keyfriend_id—that is, as if there were a separate friends table. Because of
the :class_name => "User" option, Rails will actually use the User model (and hence
the users table) under the hood.
If this all seems too abstract and even a little magical, don't fret. We encountered a similar
problem in Chapter 3 when first learning about models. We turn now (as we turned then) to

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 504 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

the Rails console, which will allow us to explore the Friendship model with a couple of
concrete examples.

14.1.3. Creating Pending Friendships
As an example of how the Friendship model works, let's fire up the console and play with a
couple of concrete objects. For this to work, you'll need to create the user Baz Quux if you
haven't already. We'll start by creating a friendship[4]:

[4] In what follows, we'll suppress the console output if it's overly verbose or otherwise unilluminating.

> ruby script/console

>> user = User.find_by_screen_name("foobar")

>> friend = User.find_by_screen_name("bazquux")

>> Friendship.create(:user => user, :friend => friend, :status => 'pending')

>> Friendship.create(:user => friend, :friend => user, :status => 'requested')

Here we've used the Active Record create method, which is essentially new and save rolled
into one (although create returns the object created rather than a boolean as save does).
We've also used the compact notation

:user => user, :friend => friend

instead of

:user_id => user.id, :friend_id => friend.id

Though they both do the same thing, Rails knows from context to use the object id rather
than the object itself, and we prefer the pithier syntax. It's important to emphasize that the
only reason the notation works for the friend is that we told Rails that the Friendship model
belongs to friends, with a the foreign key friend_id.
Now that we've created them, let's check to see if we can find the friendship rows in the
database:

>> Friendship.find_by_user_id_and_friend_id(user, friend)

=> #<Friendship:0x2bf74ec @attributes={"status"=>"pending", "accepted_at"=>nil,

"id"=>"1", "user_id"=>"1", "position"=>nil, "created_at"=>"2007-01-03 18:34:09",

"friend_id"=>"1198"}>

>> Friendship.find_by_user_id_and_friend_id(friend, user)

=> #<Friendship:0x490a7a0 @attributes={"status"=>"requested", "accepted_at"=>nil,
"id"=>"2", "user_id"=>"1198", "position"=>nil, "created_at"=>"2007-01-03 18:34

:20", "friend_id"=>"1"}>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 505 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

As in the call to create, we've omitted .id here, writing

Friendship.find_by_user_id_and_friend_id(user, friend)

instead of

Friendship.find_by_user_id_and_friend_id(user.id, friend.id)

In the example above, the friendship is only a potential friendship, as indicated by the
'requested' and 'pending' status values; it's also slightly asymmetric since we need to
indicate which user made the request. Still, there's an essential symmetry in friendship
relationships—when creating friendships we will have to be careful always to create two
rows: one row indicating that Foo is (possibly potential) friends with Baz, and a second row
indicating the converse. We'll have to figure out a way to build this into our model.

14.1.4. Friendship Request
Having seen how to create pending friendships in the console, we're now ready to make a
Friendship method to do essentially the same thing, again using the create method; the
result is a class method called request[5]. We have to be careful, though, since each
friendship request must create two new rows, as noted above; the way to ensure this is to
wrap the two calls to create inside a transaction:

[5] All the Friendship model functions will be class methods, defined using the self keyword. Recall that class methods (such as User.log_out! (Section 6.6.3) and
Spec.find_by_asl (Section 11.3.2)) belong to the class itself, and therefore use the class name when invoked outside the class.

file: app/models/friendship.rb
class Friendship < ActiveRecord::Base

belongs_to :user

belongs_to :friend, :class_name => "User", :foreign_key => "friend_id"

validates_presence_of :user_id, :friend_id

Return true if the users are (possibly pending) friends.

def self.exists?(user, friend)

not find_by_user_id_and_friend_id(user, friend).nil?

end

Record a pending friend request.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 506 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

def self.request(user, friend)

unless user == friend or Friendship.exists?(user, friend)

transaction do

create(:user => user, :friend => friend, :status => 'pending')

create(:user => friend, :friend => user, :status => 'requested')

end

end

end

end

By wrapping the two calls to create in a transaction block, we ensure that either both
succeed or both fail, thereby preventing the creation of a pending row without a
corresponding requested row. This way, if a cosmic ray hits our computer and crashes our
system immediately after the first create, no rows will be created and the database will be
rolled back to its previous valid state[6].

[6] Transactions are a general database concept, and in fact we've used them many times before in this book—or rather, Active Record has used them for us. For example,
when saving a user we simultaneously save the user's spec and FAQ as well; Active Record executes these commands in a transaction to make sure that all the changes
happen together.

Of course, before creating the friendship we first have to check that the user and the friend
aren't the same, since users can't be friends with themselves, and we also need to make sure
that no friendship already exists. We've written the auxiliary class method exists? function
for the latter purpose, but it will prove to be generally useful. Since exists? is a class
method, inside the class we could omit the class name and write simply exists?, but it does
no harm to include the class name, and in this case the code is much clearer if we write
Friendship.exists? instead.

14.1.5. Completing the Friendship Model
There are just two more methods to add to the Friendship model: one to change a pending
friendship into an accepted one, and one to end a friendship. We'll start with the accept
method, which updates a preexisting pending friendship and turns it into an accepted one,
and then add a breakup method to remove a friendship from the database:
file: app/models/friendship.rb

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 507 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

class Friendship < ActiveRecord::Base

.

.

.

Accept a friend request.

def self.accept(user, friend)

transaction do

accepted_at = Time.now

accept_one_side(user, friend, accepted_at)

accept_one_side(friend, user, accepted_at)

end

end

Delete a friendship or cancel a pending request.

def self.breakup(user, friend)

transaction do

destroy(find_by_user_id_and_friend_id(user, friend))

destroy(find_by_user_id_and_friend_id(friend, user))

end

end

private

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 508 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Update the db with one side of an accepted friendship request.

def self.accept_one_side(user, friend, accepted_at)

request = find_by_user_id_and_friend_id(user, friend)

request.status = 'accepted'

request.accepted_at = accepted_at

request.save!

end

For the accept method, we've put the hard work in accept_one_side, which finds the
pending friendship, changes its status to 'accepted', sets the accepted_at timestamp,
and then saves the result back to the database.
The database manipulations in the accept method should all be familiar, but destroy
method in breakup is new. Its effect is simply to destroy an Active Record object by deleting
its corresponding row from the database. In the present case, we've made breakup a class
method, which means that destroy requires an Active Record object as its first argument.
destroy can also be used as an object method, so that we could destroy a friendship using

friendship = find_by_user_id_and_friend_id(user, friend)

friendship.destroy

This would be more succinct if we already had a Friendship object, but in our case it's shorter
to call destroy with an explicit argument instead.
You may wonder why we use destroy instead of the possibly more intuitive delete. It
turns out that there is an Active Record method called delete that works in basically the
same way as destroy, but there's a subtle difference between the two: the destroy
method invokes the model's validations, as well as certain functions that automatically get
called at specific stages during the life of an object[7]. Because it is slightly more powerful than
delete, destroy is the preferred way to eliminate Active Record objects.

[7] Yes, this is vague. Do a web search on "ActiveRecord callbacks" to learn more.

14.1.6. Testing the Friendship Model
Testing the Friendship model is easy using the friend from the users fixture (defined in Section
13.2.4 for the email tests) and our Friendship.exists? utility function:

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 509 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

file: test/units/friendship_test.rb
require File.dirname(__FILE__) + '/../test_helper'

class FriendshipTest < Test::Unit::TestCase

fixtures :users

def setup

@user = users(:valid_user)

@friend = users(:friend)

end

def test_request

Friendship.request(@user, @friend)

assert Friendship.exists?(@user, @friend)

assert_status @user, @friend, 'pending'

assert_status @friend, @user, 'requested'

end

def test_accept

Friendship.request(@user, @friend)

Friendship.accept(@user, @friend)

assert Friendship.exists?(@user, @friend)

assert_status @user, @friend, 'accepted'

 assert_status @friend, @user, 'accepted'
 end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 510 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 def test_breakup
 Friendship.request(@user, @friend)
 Friendship.breakup(@user, @friend)
 assert !Friendship.exists?(@user, @friend)
 end

 private

 # Verify the existence of a friendship with the given status.
 def assert_status(user, friend, status)
 friendship = Friendship.find_by_user_id_and_friend_id(user, friend)
 assert_equal status, friendship.status
 end
end

Here we've added the private assert_status function for convenience.
Preparing the test database and running these tests gives

> rake db:test:prepare

(in /rails/rails_space)

> ruby test/unit/friendship_test.rb

Loaded suite test/unit/friendship_test

Started

...

Finished in 0.47111 seconds.

3 tests, 7 assertions, 0 failures, 0 errors

14.2. Friendship Requests
In this section we'll give RailsSpace users the ability to send friend requests to other users by
putting a friendship request link on each user's profile. When a user clicks on such a link, the
friendship request action will create a pending/requested friendship using the Friendship
model's request method and then send a request email using the User mailer introduced
in Section 13.1.
The material in this section ties together many different strands from previous parts of the
book, with models, views, controllers, partials, helpers, and mailers all well-represented.

14.2.1. Friendship Request Link
To get started with friendship requests, let's first generate a Friendship controller:

> ruby script/generate controller Friendship

exists app/controllers/

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 511 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

exists app/helpers/

create app/views/friendship

exists test/functional/

create app/controllers/friendship_controller.rb

create test/functional/friendship_controller_test.rb

create app/helpers/friendship_helper.rb

We won't actually start filling in the Friendship controller until Section 14.2.2, but we will be
using the Friendship helper shortly.
Our first step is to put a friendship request link on each user's profile. We'll place it in the same
contact box used in Section 13.2.2 for email:
file: app/views/profile/_contact_box.rhtml

<% if logged_in? and @user != @logged_in_user %>

<div class="sidebar_box">

<h2>

Actions

<br clear="all" />

</h2>

<%= link_to "Email this user",

:controller => "email", :action => "correspond",

:id => @user.screen_name %>

<%= friendship_status(@logged_in_user, @user) %>

<% unless Friendship.exists?(@logged_in_user, @user) %>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 512 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<%= link_to "Request friendship with #{@user.name}",

{ :controller => "friendship", :action => "create",

:id => @user.screen_name },

:confirm =>

"Send friend request to #{@user.name}?" %>

<% end %>

</div>

<% end %>

Note that we only display the friendship request link if the friendship doesn't exist. We've
also included a brief JavaScript confirmation to help prevent accidental requests. Above the
request link, we've put a short description of the friendship status, using a helper function
defined in the Friendship helper:
file: app/helpers/friendship_helper.rb

module FriendshipHelper

Return an appropriate friendship status message.

def friendship_status(user, friend)

friendship = Friendship.find_by_user_id_and_friend_id(user, friend)

return "#{friend.name} is not your friend (yet)." if friendship.nil?

case friendship.status

when 'requested'

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 513 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

"#{friend.name} would like to be your friend."

when 'pending'

"You have requested friendship from #{friend.name}."

when 'accepted'

"#{friend.name} is your friend."

end

end

end

Since we're using this helper in a profile view, we neet to include it in the Profile controller:
file: app/controllers/profile_controller.rb

class ProfileController < ApplicationController

helper :avatar, :friendship

.

.

.

The result for users with no friendship relationship appears in Fig. 14.3 (together with an
example of the confirmation message).

Figure 14.3. A user's profile with friendship request link and confirmation message.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 514 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFybmRlc3JwZXBzZmgxMmMvNHJpX2llaHRfcXN1X19pbF9naWxqa2F0cC5u

14.2.2. Controlling the Request
Now it's time to make the friendship request link actually do something by defining the
relevant action in the Friendship controller. The resulting create action[8] uses the
Friendship model's request method to update the database, and then uses the User mailer
to send a friendship request email:

[8]request is reserved by Rails and is not a valid action name.

file: app/controllers/friendship_controller.rb
class FriendshipController < ApplicationController

include ProfileHelper

before_filter :protect, :setup_friends

Send a friend request.

We'd rather call this "request", but that's not allowed by Rails.

def create

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 515 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Friendship.request(@user, @friend)

 UserMailer.deliver_friend_request(
 :user => @user,
 :friend => @friend,
 :user_url => profile_for(@user),
 :accept_url => url_for(:action => "accept", :id => @user.screen_name),
 :decline_url => url_for(:action => "decline", :id => @user.screen_name)
)
 flash[:notice] = "Friend request sent."
 redirect_to profile_for(@friend)
 end

 private

 def setup_friends
 @user = User.find(session[:user_id])
 @friend = User.find_by_screen_name(params[:id])
 end
end

Using the @user and @friend variables defined by the setup_friends before filter, we
first update the friendships table with request, and then call
UserMailer.deliver_friend_request with the information needed to construct the
friend request email; since this uses profile_for, we have to include ProfileHelper.
Of course, we have to make sure that the deliver_friend_request method exists. Recall
from Section 13.1 that we can do this by defining a friend_request method in the
UserMailer:
file: app/models/user_mailer.rb

class UserMailer < ActionMailer::Base

.

.

.

def friend_request(mail)

subject 'New friend request at RailsSpace.com'

from 'RailsSpace <do-not-reply@railsspace.com>'

recipients mail[:friend].email

body mail

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 516 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

end

As discussed in Section 13.2.3, the hash argument to deliver_friend_request means
that the mail variable has all the relevant user objects and the various URLs.
The message therefore appears as follows:
file: app/views/user_mailer/friend_request.rhtml

Hello <%= @friend.name %>,

You have a new RailsSpace friend request from <%= @user.name %>.

View <%= @user.name %>'s profile:

<%= @user_url %>

Accept: <%= @accept_url %>

Decline: <%= @decline_url %>

--The RailsSpace team

With that, the request link is live. Clicking on it results in flash and updated status messages
(Fig. 14.4) and a friendship request email (Fig. 14.5).

Figure 14.4. A user's profile immediately after a friendship request.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 517 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyZXN1c3JwZF9zcmgxM2MvNGVxX2RpZWhmZXRuaV9pZ3BwYV90dWF0dC5zamxfcw--

Figure 14.5. A friendship request email.

[View full size image]

14.3. Managing Friendships
Now that we've made it possible to send friendship requests, we'll build the core part of
friendship management: accepting, declining, and canceling friendship requests, and
deleting friendships. We'll build the accept and decline actions shortly, thereby making

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 518 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFybmRlc3JwZXBzZmgxNGMvNHJpX2llaHRfcXN1X19pZWxwbWEuaV9sZ2p0YQ--

the friendship request email links work, but first we'll create a place for viewing and managing
friends on the user hub.

14.3.1. Has_Many: Through
To display a RailsSpace user's friends on the hub, we'd like to be able to iterate through the
friends and make an HTML table row for each one. The rhtml for such a friends listing might
look something like this:

<table>

<% @user.friends.each do |friend| %>

<tr>

<td><%= link_to thumbnail_tag(friend), profile_for(friend) %></td>

<td><%= link_to friend.name, profile_for(friend) %></td>

</tr>

<% end %>

</table>

We would also want similar listings for requested and pending friends.
Previously in RailsSpace, model associations have been one-to-one, with (for example) each
user having one spec—a relationship we encoded using has_one and belongs_to. In the
present case, though, a user potentially has many friendships. In keeping with its predilection
for natural-language constructs, Rails provides the has_many association for exactly this
purpose:

class User < ActiveRecord::Base

has_one :spec

has_one :faq

has_many :friendships

.

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 519 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

In the same way that has_one :spec gives access to the user spec through user.spec,
has_many :friendships gives access to an array of the user's friendships through
user.friendships—i.e., each friendship in the array has a different friend_id but they
all have a user_id equal to that of the given user.
Once we have an array of a particular user's friendships, we could extract the user's current
(accepted) friends by marching through user.friendships, selecting those with
status equal to 'accepted', and then instantiating an array of users based on the
friend_id attributes of those accepted users. We could do the same for users whose status
is 'requested' and 'pending', thereby assembling arrays of accepted, requested, and
pending friends. We might define User model methods to perform these operations, and
name them thusly:

user.friends

user.requested_friends

user.pending_friends

If that sounds like an awful lot of work, we agree—and, happily, so do the Rails designers.
We can compress all of the rather confusing steps above into a single command for each
type of friend, using the remarkable has_many :through construction:

class User < ActiveRecord::Base

.

.

.

has_many :friendships

has_many :friends,

:through => :friendships,

:conditions => "status = 'accepted'"

has_many :requested_friends,

:through => :friendships,

:source => :friend,

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 520 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

:conditions => "status = 'requested'"

has_many :pending_friends,

:through => :friendships,

:source => :friend,

:conditions => "status = 'pending'"

.

.

.

This gives rise to precisely the friends lists we want. By putting conditions on the call to
has_many, we arrange for Rails to select the friends appropriate to each case based on the
value of the status column in the friendships table. This is even cleverer than it looks
at first—there aren't any requested_friends or pending_friends tables, not even
fake ones like the one we have for friends. Rails lets us get around this for the requested
and pending friends by specifying a source for the association, which in our case is the fake
friends table created by

belongs_to :friend, :class_name => "User", :foreign_key => "friend_id"

in the Friendship model.
With that, we're finally ready to add the new has_many relationships to the User model. The
has_many function takes a number of options, including a standard ordering for results
returned from the database; let's add an :order option to each has_many :through
declaration so that the friends in each category come out in a sensible order:
file: app/models/user.rb

class User < ActiveRecord::Base

has_one :spec

has_one :faq

has_many :friendships

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 521 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

has_many :friends,

:through => :friendships,

:conditions => "status = 'accepted'",

:order => :screen_name

has_many :requested_friends,

:through => :friendships,

:source => :friend,

:conditions => "status = 'requested'",

:order => :created_at

has_many :pending_friends,

:through => :friendships,

:source => :friend,

:conditions => "status = 'pending'",

:order => :created_at

.

.

.

14.3.2. Hub Friendships
We're now ready to expand on the rhtml stub at the beginning of Section 14.3.1 by making
the _friends.rhtml partial. It is a table with rows for accepted, requested, and pending
friends, together with links for deleting friends and accepting, declining, and canceling

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 522 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

friendship requests. In anticipation of using this on both the hub and profile pages, we've
used the hide_edit_links? function defined in Section 9.6 to suppress various parts of
the partial depending on context:
file: app/views/friendship/_friends.rhtml

<table>

<tr>

<th colspan="3" align="left">

<%= pluralize(@user.friends.count, "RailsSpace friend") %>

</th>

</tr>

<% @user.friends.each do |friend| %>

<tr>

<td width="50">

<%= link_to thumbnail_tag(friend), profile_for(friend) %>

</td>

<td><%= link_to friend.name, profile_for(friend) %></td>

<td>

<% unless hide_edit_links? %>

<%= link_to "Delete",

{ :controller => "friendship", :action => "delete",

:id => friend.screen_name },

:confirm =>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 523 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

"Really delete friendship with #{friend.name}?" %>

<% end %>

</td>

</tr>

<% end %>

<% unless @user.requested_friends.empty? or hide_edit_links? %>

<tr>

<th colspan="3" align="left">

<%= pluralize(@user.requested_friends.count, "requested friend") %>

</th>

</tr>

<% @user.requested_friends.each do |requester| %>

<tr>

<td><%= link_to thumbnail_tag(requester), profile_for(requester) %></td>

<td><%= link_to requester.name, profile_for(requester) %></td>

<td>

<%= link_to "Accept",

:controller => "friendship", :action => "accept",

:id => requester.screen_name %> /

<%= link_to "Decline",

{ :controller => "friendship", :action => "decline",

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 524 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

:id => requester.screen_name },

:confirm =>

"Really decline friendship with #{requester.name}?" %>

</td>

</tr>

<% end %>

<% end %>

<% unless @user.pending_friends.empty? or hide_edit_links? %>

<tr>

<th colspan="3" align="left">

<%= pluralize(@user.pending_friends.count, "pending friend") %>

</th>

</tr>

<% @user.pending_friends.each do |pending_friend| %>

<tr>

<td><%= link_to thumbnail_tag(pending_friend),

profile_for(pending_friend) %></td>

<td><%= link_to pending_friend.name,

profile_for(pending_friend) %></td>

<td><%= link_to "Cancel request",

{ :controller => "friendship", :action => "cancel",

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 525 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

:id => pending_friend.screen_name },

:confirm =>

"Cancel friendship request?" %></td>

</tr>

<% end %>

<% end %>

</table>

We should note that there's quite a bit of repeated code here; this is a good example of a
situation where each case is just different enough that there's no obvious way to make it
simpler with helper functions and partials.
There's one more detail to take care of before we can list friends on the hub: we should take
into account the possibility that some users won't upload avatar images. We'll do this by
editing the thumbnail_url method in the Avatar model (Section 12.1.1) so that it returns
a default thumbnail if the avatar doesn't exist:

class Avatar < ActiveRecord::Base

.

.

.

def thumbnail_url

thumb = exists? ? thumbnail_name : "default_thumbnail.png"

"#{URL_STUB}/#{thumb}"

end

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 526 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

end

A convenient choice for a default thumbnail is rails.png, so we'll copy public/images/
rails.png to public/images/avatars/default_thumbnail.png. As a result,
even avatar-less users will still be well-represented in the friends listing.
The only thing left is to render the partial on the hub:
file: app/views/user/index.rhtml

.

.

.

My Bio:

<%= link_to "(edit)", :controller => "faq", :action => "edit" %>

 <div id="bio" class="faq_answer">
 <%= sanitize @faq.bio %>
 </div>

 <hr noshade />
 <%= render :partial => "friendship/friends" %>
.
.
.

There are no accepted friends yet since we have yet to write the accept action, but
requested and pending friends already show up on the hub (Fig. 14.6).

Figure 14.6. The user hub with requested and pending friends.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 527 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyZnJfal9wLmRzaGgxNWMvNHViX25hZXBzbGl0Z19p

14.3.3. Friendship Actions
In contrast to the hub, the profile listing will only show accepted friends. To get that to work,
we first have to write the accept action. Adding that—together with decline, cancel,
and delete actions—is the goal of this section.
The structure of each action is virtually identical. We include a setup_friends before filter
to create the instance variables @user and @friend. Each action checks to make sure that
@friend is in the relevant friends list (e.g., requested_friends). If so, we use the
appropriate method in the Friendship model to accept or delete the friendship:
file: app/controllers/friendship_controller.rb

class FriendshipController < ApplicationController

include ProfileHelper

before_filter :protect, :setup_friends

.

.

.

def accept

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 528 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

if @user.requested_friends.include?(@friend)

Friendship.accept(@user, @friend)

flash[:notice] = "Friendship with #{@friend.screen_name} accepted!"

else

flash[:notice] = "No friendship request from #{@friend.screen_name}."

end

redirect_to hub_url

end

def decline

if @user.requested_friends.include?(@friend)

Friendship.breakup(@user, @friend)

flash[:notice] = "Friendship with #{@friend.screen_name} declined"

else

flash[:notice] = "No friendship request from #{@friend.screen_name}."

end

redirect_to hub_url

end

def cancel

if @user.pending_friends.include?(@friend)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 529 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Friendship.breakup(@user, @friend)

flash[:notice] = "Friendship request canceled."

else

flash[:notice] = "No request for friendship with #{@friend.screen_name}"

end

redirect_to hub_url

end

def delete

if @user.friends.include?(@friend)

Friendship.breakup(@user, @friend)

flash[:notice] = "Friendship with #{@friend.screen_name} deleted!"

else

flash[:notice] = "You aren't friends with #{@friend.screen_name}"

end

redirect_to hub_url

 end

 private

 def setup_friends
 @user = User.find(session[:user_id])
 @friend = User.find_by_screen_name(params[:id])
 end
end

Note that the Friendship.breakup method does triple duty, since declining, canceling,
and deleting friendships are all fundamentally the same database operation.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 530 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

With these actions defined, the email links from the friendship request message and the links
on the hub URL are all live and functional. In particular, we can finally accept friendships. If
you want to accept a friend request using the email link, be careful to log out of RailsSpace :
if you send a request to Foo Bar from Baz Quux and then click on the accept link, you'll get
an error, since you'll still be logged in as Baz. (Of course, such a situation is far less likely to
occur in real life than when developing and testing this feature.)
Once a user has accepted a few friends, we can arrange for them to show up on his profile
using the _friends partial:
file: app/views/profile/show.rhtml

.

.

.

<hr noshade />

Friends:

<%= render :partial => "friendship/friends" %>

.

.

.

Once you have created a few friendships for Baz (possibly registering a few new users in the
process), take a look at his profile. The result should be something like Fig. 14.7.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 531 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Figure 14.7. The user profile with friend listing.

14.3.4. Testing Friendship Requests
As a final touch, let's write a simple test for friendship requests. The sequence is simple: first,
log in as @user and get the create action for @friend.screen_name; second, log in
as @friend and get the accept action for @user.screen_name. The test then verifies
the proper flash message and redirect for each action:
file: test/functional/friendship_controller_test.rb

require File.dirname(__FILE__) + '/../test_helper'

require 'friendship_controller'

Re-raise errors caught by the controller.

class FriendshipController; def rescue_action(e) raise e end; end

class FriendshipControllerTest < Test::Unit::TestCase

include ProfileHelper

fixtures :users, :specs

def setup

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 532 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

@controller = FriendshipController.new

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

@user = users(:valid_user)

@friend = users(:friend)

Make sure deliveries aren't actually made!

ActionMailer::Base.delivery_method = :test

end

 def test_create
 # Log in as user and send request.
 authorize @user
 get :create, :id => @friend.screen_name
 assert_response :redirect
 assert_redirected_to profile_for(@friend)
 assert_equal "Friend request sent.", flash[:notice]
 # Log in as friend and accept request.
 authorize @friend
 get :accept, :id => @user.screen_name
 assert_redirected_to hub_url
 assert_equal "Friendship with #{@user.screen_name} accepted!",
 flash[:notice]
 end
end

Running this gives

\begin{shell}

> ruby test/functional/friendship_controller_test.rb

Loaded suite test/functional/friendship_controller_test

Started

.

Finished in 0.180971 seconds.

1 tests, 5 assertions, 0 failures, 0 errors

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 533 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

15. RESTful blogs

RailsSpace has come a long way since we completed the login and authentication system in
Chapter 7: we've added full-text search, browsing by age, sex, and location, a double-blind
email interface, and customizable user profiles with avatars and friends lists. In this chapter
and the next, we'll add one final feature: a simple weblog, or blog[1], for each of our users. Like
its more full-featured cousins (such as the Rails Typo project[2]), the blog engine developed
in this chapter will allow users to create, manage, and publish blog posts. In Chapter 16, we'll
extend the blog engine by adding comments (with a healthy dose of Ajax).

[1] If you didn't know this already, what are you doing reading this book?

[2]http://typosphere.org/

We're going to build RailsSpace blogs using a development style called REST, which is a
source of considerable excitement in the Rails community. REST support is new as of Rails
1.2, and it represents the cutting (some might even say bleeding) edge of Rails development.
Since REST represents a marked break from traditional ways of structuring web applications,
we begin this chapter with a general introduction to its core principles (Section 15.1).
REST deals with Big Ideas, so discussions about REST are often highly abstract; though we
may get a bit theoretical at times, we'll focus on practical examples, with the goal of
explaining what REST means for us as Rails programmers. As the chapter unfolds, our
examples will become progressively more concrete, leading ultimately to a fully RESTful
implementation of blogs and blog posts. (Chapter 16 continues the theme by making the
blog comments RESTful as well.) As you gain more experience with the details of REST, we
suggest occasionally referring back to Section 15.1 to see how the individual pieces fit into
the big picture.

15.1. We Deserve a REST Today
REST (for Representational State Transfer) is an architectural style for developing distributed,
networked systems and software applications—in particular, the World Wide Web and web
applications. REST seeks to explain and elucidate how the web works, why it works as well
as it does, and how it could work better. According to Roy Fielding, who first identified (and
named) REST in his doctoral dissertation[3],

[3] Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures. Doctoral dissertation, University of California, Irvine, 2000.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 534 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://typosphere.org/

REST emphasizes scalability of component interactions, generality of interfaces,
independent deployment of components, and intermediary components to
reduce interaction latency, enforce security, and encapsulate legacy systems.

That's pretty heady stuff. What are some of the practical implications?
In the context of web applications, REST offers a theoretical foundation for a development
style that produces clean and highly structured code while providing a unified interface
between applications and clients. RESTful web applications interact through the four
fundamental operations supported by the Hypertext Transfer Protocol (HTTP): POST, GET,
PUT, and DELETE[4]. Furthermore, because applications based on REST principles usually strive
to support both human-machine and machine-machine interactions, a REST interface
typically provides data representations specialized for the type of request—e.g., returning
HTML to a web browser but XML to an RSS feed reader. As a result of these design principles,
REST effectively enables web applications to operate together in a distributed fashion
through a series of well-defined resources—which, in the context of the web, essentially
means URLs. (An application designed to work with other applications in this manner is often
called a web service[5].)

[4] We've met POST and GET already in RailsSpace (Section 4.2.5), but we admit that we didn't know about PUT and DELETE until we started learning about REST—and we
suspect that we're not alone.

[5] Many people feel that REST fulfills the promise of other methods (such as RPC and SOAP) designed to solve the same problem.

15.1.1. REST and CRUD
Developing a Rails application using REST principles means exploiting the natural
correspondence between the HTTP methods POST, GET, PUT, DELETE and the traditional
CRUD (Create, Read, Update, Delete[6]) operations of relational databases. In contrast to the
traditional controller/action/id approach, REST embraces the radical notion that
there are only four actions—the four CRUD operations—which, rather than being an explicit
part of the URL, are implicit in the HTTP request itself. This has far-reaching implications for
the structure of our applications: thinking always in terms of CRUD operations often leads to
deep insights into the data models and associated controllers (a point emphasized by Rails
creator David Heinemeier Hansson in his keynote address at RailsConf 2006).

[6] or Destroy.

Let's consider these ideas in a more concrete setting by revisiting the Spec controller for user
specifications[7]. What would user specs look like if they used the Rails implementation of
REST? (Throughout this discussion, we encourage you to refer frequently to Fig. 15.1; you
can gain much REST wisdom from contemplation of this table.)

[7] Recall from Section 9.2 that user specs consist of the user's first and last name, gender, birthdate, occupation, city, state, and zip code.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 535 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Figure 15.1. A hypothetical RESTful Specs resource.

DB Responder HTTP method URL path Helper function
 Actions

C create POST /specs specs_path

R show GET /specs/1 spec_path(1)

U update PUT /specs/1 spec_path(1)

D destroy DELETE /specs/1 spec_path(1)

 Modifiers

R index GET /specs specs_path

R new GET /specs/new new_spec_path

R edit GET /specs/1;edit edit_spec_path(1)

spec_path(1) and spec_path(:id => 1) are equivalent.

Each path helper has a corresponding URL helper that returns the full URL.

For example, spec_url(1) gives http://localhost:3000/specs/1.

Since URLs play such a crucial role in REST, we'll start by taking another look at the URLs in
our original, traditional spec. So far in RailsSpace, we have followed the URL construction
supported by the default route, namely,

/controller/action/id

In Chapter 9, we further suggested following the natural convention of using nouns for
controllers and verbs for actions. By following these conventions, we arrived at the following
URL to edit the user spec:

/spec/edit

Note that here the spec id doesn't appear in the URL; it is inferred based on the user id in the
session. This action actually does four different things, depending on context: invoking the
action with a GET request returns a form to create or edit a spec, while hitting it with a POST
request actually completes the creation or edit. As far as this URL is concerned, the only kind
of requests are GET and POST.
Now imagine implementing specs using REST principles. Since the action is implicit in the
HTTP method used to make the request, RESTful URLs don't have actions, but they do always
require a controller. In our case, this will be the Specs controller[8]. Performing the basic CRUD
operations on specs involves sending the proper HTTP requests to the Specs controller, along
with the spec id for the read, update, and delete actions. To create a new spec, we send a
POST request to the URL

[8] Note that REST adds the convention that the controller-nouns should be plural.

/specs

To read (show), update, or delete the spec with id 1, we hit the URL

/specs/1

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 536 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

with GET, PUT, or DELETE[9]. Getting this to work involves routing the HTTP requests to the
create, show, update, and destroy actions in the controller (Fig. 15.1).

[9] Web browsers don't actually support PUT or DELETE, so Rails fakes them using a couple of hacks. Most other programs that consume web resources understand all four
HTTP methods, and we hope that in the future web browsers will, too. (It's actually not the browsers' fault, since the HTML specification doesn't allow anything other than
GET and POST.)

To handle this new routing style, the Rails implementation of REST adds a method called
map.resources to the map.connect and map.<named_route> we've encountered
previously in RailsSpace. For RESTful specs, this means that our routes file would look like
this:
file: config/routes.rb

ActionController::Routing::Routes.draw do |map|

.

.

.

Named routes.

map.hub 'user', :controller => 'user', :action => 'index'

map.profile 'profile/:screen_name', :controller => 'profile', :action => 'show'

 # REST resources.
 map.resources :specs

 # Install the default route as the lowest priority.
 map.connect ':controller/:action/:id'
end

The next section has more details on what exactly map.resources buys us.

15.1.2. URL Modifiers
We come now to the first minor glitch in our wonderful CRUD-filled REST universe: though
we can GET a page to show specs, we can't GET pages to create or edit them, since if we POST
or PUT to a spec URL it actually performs the action rather than returning a page. The problem
here is essentially linguistic in nature: we have a small set of verbs (actions) acting on a
potentially large number of nouns (controllers), but we have no way of indicating in what
context a verb acts on a noun. In the present case, what we want is to tell Rails to GET a page
to make a new spec or an edit form to update an existing one.
The solution is to add modifiers. To create a new spec, for example, we would GET the Specs
controller with the modifier new:

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 537 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

/specs/new

Similarly, to show an edit form for a pre-existing spec, we would GET the Specs controller
with the spec id and the modifier edit:

/specs/1;edit

Since both actions and modifiers respond to HTTP requests, we'll refer to them collectively
as responders[10].

[10] As we'll see, the actual implementation follows this linguistic hint by introducing a function called respond_to that responds to requests.

In addition to new and edit, it's conventional to provide an index modifier, which in this
case gives a listing of all specs[11]. Both of the following URLs work in this context:

[11] It wouldn't make much sense to expose this to RailsSpace end-users, but in principle such a list might be useful for some sort of administrative back-end.

/specs/index
/specs

People usually refer to the RESTful index as an action, just as it's usually called an action in
the context of ordinary URLs, but it isn't really. Logically, such a listing should probably be
associated with a modifier such as all, but at this point the legacy name index is too deeply
entrenched to be displaced.
Taken together, the standard CRUD actions and the index, new, and edit modifiers
constitute the canonical controller methods for REST applications. For a RESTful spec, we
automatically get all seven simply by putting map.resources :specs in the routes file
(config/routes.rb). In addition to routing requests, map.resources also gives rise to
a variety of URL helpers, much like named routes such as map.hub give helpers like
hub_url (Section 9.5.2). A summary of the Specs resource appears in Fig. 15.1.
Since some controllers require modifiers other than the defaults, Rails makes it easy to roll
your own. Just define a new controller method for the modifier and tell Rails how to route it.
For example, if (as RailsSpace administrators) we wanted a special administrative page for
each spec, we could make an admin modifier as follows. First, we would add an admin
method to the Specs controller[12]. Second, we would tell Rails how to route this request
properly by adding admin as one of the Specs modifiers that responds to GET requests:

[12] We'll see what such responder methods look like starting in Section 15.2.3.

map.resources :specs, :member => { :admin => :get }

Rails automatically gives us helpers to generate the proper URLs, so that

admin_spec_path(1)

would give

/specs/1;admin

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 538 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

15.1.3. An Elephant in the Room
So far we've managed to walk around the elephant in the room, but now we have to
acknowledge its presence: some of the RESTful URLs contain a semicolon! A semicolon is
indeed a rather odd character for a URL, but it (or something like it) is necessary to separate
the id and the modifier in the URL. At first it might seem like we could just use a slash separator,
leading to URLs of the form

/specs/1/edit

Unfortunately, this would lead to an essential ambiguity by making it impossible to nest
RESTful resources. For example, we'll see that RESTful RailsSpace blogs will have RESTful
posts, leading to URLs of the form

/blogs/1/posts

If we were to define both a Posts controller and a posts modifier, there would be no way to
tell whether the word posts in this URL referred to the controller or to the modifier. Of
course, we could only introduce such an ambiguity through sheer stupidity, but we can avoid
even the possibility of a clash by using a distinct separator; the Rails designers opted for a
semicolon[13]. We admit that this notation is a little funky, and seeing semicolons in URLs takes
some getting used to, but we've gotten used to it, and so will you.

[13] Frameworks differ on this point; for example, the REST support in Struts (a Java framework whose name Rails parodies) uses an exclamation point for the same purpose.

As mysterious as the URL semicolons might appear, there is an underlying linguistic reason
for their existence: modifiers are usually adjectives, which describe some aspect of a resource
(such as a new spec or an edit form[14]). We can think of some cases where a verb modifier
makes more sense—a cancel modifier, for example, to cancel an edit form—but there is
great conceptual power in maintaining the distinction between adjective modifiers, noun
controllers, and verb actions. As argued above, some (non-slash) separator is needed to
preserve this distinction in URLs.

[14] Of course, "edit" as also a verb, but in this context it's an adjective.

Since REST works best when the HTTP methods are the only verbs, defining verb modifiers
is a often hint that we should introduce another controller and then use a CRUD action. For
instance, if we wanted to allow RailsSpace users to tag the specs of their favorite users, we
might be tempted to use a tag modifier as if it were an action, so that

/specs/1;tag

would respond to a PUT request and update the spec with a tag. But look at it another way:
fundamentally, we are creating a tag and associating it with a particular spec; the underlying
operation is create, which is part of CRUD. This means that we could define a Tags controller
(and presumably a Tag model) and then POST to the URL

/specs/1/tags

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 539 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

to create a tag for spec 1.
We've heard that some people, when they first see the REST implementation in Rails, think
that it's sub-moronic, since it seems to trade perfectly sensible URLs of the form

/controller/action/id

for the seemingly idiotic (and excessively semicoloned)

/controller/id;action

We agree that this would be crazy if true, but we now know that RESTful URLs don't have
actions, and (ideally) their modifiers are adjectives, not verbs. The actual prototype for a
typical RESTful URL is thus

/controller/id;modifier

with an implicit (HTTP method) action. It turns out that Rails isn't a sub-moron—it's a super-
genius!

15.1.4. Responding to Formats and a Free API
As noted briefly at the beginning of this section, one aspect of REST involves responding to
different requests with different formats, depending on the format expected by the request.
In Rails we can accomplish this with a trivial addition to the URL, namely, the filename
extension[15], so that GETting the URL

[15] More advanced users should note that we can accomplish the same thing by modifying the Accept header of the request; for example, setting Accept to text/
xml would cause Rails to return XML.

/specs/1.xml

would return XML instead of HTML. Using the Rails REST support, we can return other formats
as well so that, e.g., we could arrange for

/specs/1.yml

to respond with a YAML version of the spec.
Although we have yet to see the guts of an actual RESTful implementation, just based on the
parts of the application exposed to the user—that is, the URLs—we already have a good idea
of how the application must behave. The alert reader might notice that this is practically the
definition of an Application Programming Interface (API), and indeed we can effectively
expose an API for our application simply by publishing a list of controllers and modifiers.
Moreover, by having a single resource respond differently based on the type of format
requested, a REST API can automatically interoperate with applications that understand
HTML, XML, or any other format we care to support.
In short, because REST puts such sharp constraints on our URLs—no actions, explicit ids,
filename extensions for different formats, and a consistent and structured way to add
modifiers—RESTful applications effectively come equipped with a free API.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 540 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

15.2. Scaffolds for a RESTful Blog
In this section we build on the ideas from the simple (and hypothetical) Specs resource in
order to make the more complicated (and real) Blogs and Posts resources. We'll use Rails
scaffolding to get us started, and the resulting Posts controller will finally give us a chance
to peek behind the REST curtain. Despite the scaffolding head start, bringing the RESTful
blog to full fruition will have to wait for the changes made in Section 15.3. Nevertheless, by
the end of this section we'll have a good idea of how the different REST pieces fit together.

15.2.1. The First RESTful Resource
Our first step will be to generate a resource for blogs. By itself, the Blogs resource won't
actually give us much—since each RailsSpace user will have only one blog, we don't plan to
update or delete them. Our real goal is the RESTful posts living inside these blogs, but to have
fully RESTful URLs this means that blogs have to be RESTful, too.
Based on the scripts used to generate models and controllers, you can probably guess the
script to generate a resource:

> script/generate resource Blog

exists app/models/

exists app/controllers/

exists app/helpers/

create app/views/blogs

exists test/functional/

exists test/unit/

create app/models/blog.rb

create app/controllers/blogs_controller.rb

create test/functional/blogs_controller_test.rb

create app/helpers/blogs_helper.rb

create test/unit/blog_test.rb

create test/fixtures/blogs.yml

exists db/migrate

create db/migrate/008_create_blogs.rb

route map.resources :blogs

This did a ton of work for us by generating both a model and a controller, even using the
proper REST-style plural blogs_controller.rb[16]. We've seen these before, though, in

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 541 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

the context of model and controller generations. The only completely novel effect of
generating a resource appears in the final line, which tells us that generate added a route
to the top of the routes.rb file:

[16] In the present case, the Blogs controller needs no contents, and we will leave it effectively blank—the default content is all we'll ever need. In fact, we actually don't
need even that—since we never use CRUD operations on blogs, we could remove the Blogs controller and never notice the difference!

file: app/config/routes.rb
ActionController::Routing::Routes.draw do |map|

map.resources :blogs

.

.

.

As mentioned briefly in Section 15.1, REST adds the resources aspect of map to go along
with connect and named routes such as map.hub. The map.resources line doesn't yet
do us much good, since it's there mainly as a prerequisite to RESTful post URLs; we'll explain
map.resources more thoroughly once we make the Posts resource in Section 15.2.2.
Before moving on, we should take care of the Blog model, which corresponds to a simple
table whose sole job is to associate users with blogs:
file: db/migrate/008_create_blogs.rb

class CreateBlogs < ActiveRecord::Migration

def self.up

create_table :blogs do |t|

t.column :user_id, :integer

end

end

def self.down

drop_table :blogs

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 542 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

end

We also need to tie the User model and the Blog model together. Their relationship is the
same one we saw in the context of the spec and the FAQ—a user has_one blog and a blog
belongs_to a user:
file: app/models/user.rb

class User < ActiveRecord::Base

has_one :spec

has_one :faq

has_one :blog

.

.

.

and
file: app/models/blog.rb

class Blog < ActiveRecord::Base

belongs_to :user

end

15.2.2. Blog Posts
Now we come to the heart of the RESTful blog, a resource for blog posts. Though we won't
get there until Section 15.3, a summary of our eventual goal appears in Fig. 15.2. It is well
worth meditating on.

Figure 15.2. Nested resources for RESTful blog posts.

DB Responder HTTP method URL path Helper function
 Action

C create POST /blogs/1/posts posts_path(1)

R show GET /blogs/1/posts/99 post_path(1, 99)

U update PUT /blogs/1/posts/99 post_path(1, 99)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 543 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

DB Responder HTTP method URL path Helper function
D destroy DELETE /blogs/1/posts/99 post_path(1, 99)

 Modifier

R index GET /blogs/1/posts posts_path(1)

R new GET /blogs/1/posts/new new_post_path(1)

R edit GET /blogs/1/posts/99;edit edit_post_path(1, 99)

post_path(1, 99) and post_path(:blog_id => 1, :id => 99) are equivalent.

Inside /blogs/1, the blog id can be omitted in the helper.

In this case, posts_path and post_path(:id => 99) (but not post_path(99)) all work.

Each path helper has a corresponding URL helper that returns the full URL.

For example, post_url(1, 99) gives http://localhost:3000/blogs/1/posts/99.

We'll start by generating a scaffold resource, which is like generate resource but also
gives us rudimentary views and a nearly complete controller. We have avoided scaffolding
so far in RailsSpace, but we think it makes a lot of sense in the context of REST (see box).

Rails scaffolding

Scaffolding, mentioned briefly in Chapter 1, is code generated by Rails for the
purposes of interacting with data models, principally through the basic CRUD
operations. Some introductions to Rails use scaffolding from the start, but we've
avoided scaffolding so far in RailsSpace primarily for two reasons. First, scaffolding
can become a crutch, making programmers dependent on autogenerated code.
Scaffolding is thus a potential impediment to learning. Second, we find the code
generated by the default scaffold command somewhat cumbersome; it
provides a questionable example of Rails programming style. Unfortunately, in a
scaffold-first approach it's the first code you see.
Fortunately, RESTful scaffolding code is actually quite nice for the most part[17].
This is mainly because the principal goal of scaffolds—namely, CRUD—maps so
nicely to the underlying abstractions of REST. Since it's clean and convenient, and
since at this point you're in no danger of becoming overly reliant on generated
code, we've elected to use scaffolding in our discussion of REST.

[17] We still don't like the views.

The command to generate REST scaffolding is similar to the command to generate a REST
resource, with scaffold_resource in place of resource. To make the scaffolding
maximally useful, we'll include the Post data model on the command line (as we did with the
Friendship model in Section 14.1.2):

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 544 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

> ruby script/generate scaffold_resource Post blog_id:integer title:string \

body:text created_at:datetime updated_at:datetime

exists app/models/

exists app/controllers/

exists app/helpers/

create app/views/posts

exists test/functional/

exists test/unit/

create app/views/posts/index.rhtml

create app/views/posts/show.rhtml

create app/views/posts/new.rhtml

create app/views/posts/edit.rhtml

create app/views/layouts/posts.rhtml

create public/stylesheets/scaffold.css

create app/models/post.rb

create app/controllers/posts_controller.rb

create test/functional/posts_controller_test.rb

create app/helpers/posts_helper.rb

create test/unit/post_test.rb

create test/fixtures/posts.yml

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 545 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

exists db/migrate

create db/migrate/009_create_posts.rb

route map.resources :posts

In the last line we have a second example of a change to the routes file. By default, the
generator simply puts the map.resources line at the top of routes.rb, which gives us
this:
file: app/config/routes.rb

ActionController::Routing::Routes.draw do |map|

map.resources :posts

map.resources :blogs

.

.

.

If posts lived by themselves, this default routing would be fine, but we want posts to live
inside blogs. We'll see how to tell this to Rails in Section 15.3.2.
Because of the command-line arguments to scaffold_resource, the Post model
migration is ready to go:
file: db/migrate/009_create_posts.rb

class CreatePosts < ActiveRecord::Migration

def self.up

create_table :posts do |t|

t.column :blog_id, :integer

t.column :title, :string

t.column :body, :text

t.column :created_at, :datetime

t.column :updated_at, :datetime

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 546 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

def self.down

drop_table :posts

end

end

Note that we've included a blog_id in anticipation of connecting posts to blogs (Section
15.3.1).
All we need to do now is migrate, which (since we haven't migrated since generating the
Blogs resource) creates both the blogs and posts tables:

> rake db:migrate

(in /rails/rs_svn)

== CreateBlogs: migrating ==

-- create_table(:blogs)

-> 0.0678s

== CreateBlogs: migrated (0.0681s) ===

== CreatePosts: migrating ==

-- create_table(:posts)

-> 0.1386s

== CreatePosts: migrated (0.1389s) ===

15.2.3. The Posts Controller
The actual machinery for handling routed requests lives in the Posts controller, which, thanks
to scaffold_resource, is already chock full of actions and modifiers. It's important to
emphasize that these are the defaults, suitable for manipulating a model with the default

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 547 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

resources. Since it doesn't take into account the relationship between blogs and posts, this
scaffolding won't work out of the box. It's still instructive, though, so let's take a look at it
before we modify it for use on RailsSpace.
Inside the Posts controller, the create, show, update, and destroy actions correspond
to the create, read, update, and delete operations of CRUD, while the index, new, and
edit modifiers respond to GET requests with pages for listing posts, creating new ones, and
editing existing ones. (It's sometimes hard to keep track of all the different REST responders;
we find Fig. 15.2 invaluable for this purpose.) Let's take a look at it:
file: app/controllers/posts_controller.rb

class PostsController < ApplicationController

GET /posts

GET /posts.xml

def index

@posts = Post.find(:all)

respond_to do |format|

format.html # index.rhtml

format.xml { render :xml => @posts.to_xml }

end

end

GET /posts/1

GET /posts/1.xml

def show

@post = Post.find(params[:id])

respond_to do |format|

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 548 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

format.html # show.rhtml

format.xml { render :xml => @post.to_xml }

end

end

GET /posts/new

def new

@post = Post.new

end

GET /posts/1;edit

def edit

@post = Post.find(params[:id])

end

POST /posts

POST /posts.xml

def create

@post = Post.new(params[:post])

respond_to do |format|

if @post.save

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 549 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

flash[:notice] = 'Post was successfully created.'

format.html { redirect_to post_url(@post) }

format.xml { head :created, :location => post_url(@post) }

else

format.html { render :action => "new" }

format.xml { render :xml => @post.errors.to_xml }

end

end

end

PUT /posts/1

PUT /posts/1.xml

def update

@post = Post.find(params[:id])

respond_to do |format|

if @post.update_attributes(params[:post])

flash[:notice] = 'Post was successfully updated.'

format.html { redirect_to post_url(@post) }

format.xml { head :ok }

else

format.html { render :action => "edit" }

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 550 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

format.xml { render :xml => @post.errors.to_xml }

end

end

end

DELETE /posts/1

DELETE /posts/1.xml

def destroy

@post = Post.find(params[:id])

@post.destroy

 respond_to do |format|
 format.html { redirect_to posts_url }
 format.xml { head :ok }
 end
 end
end

There are some predictable elements here, including familiar Active Record CRUD methods
like save, update_attributes, and destroy, together with the flash[:notice] and
redirects we've come to know and love. There is one completely novel element, though: the
respond_to function.
Together with map.resources, respond_to is the heart of REST: it is respond_to that
allows URLs to respond differently to different formats. respond_to takes a block
argument, and the block variable (typically called format or wants) then calls methods
corresponding to the different formats understood by the responder. If you find yourself a
bit confused by respond_to, you're in good company—it is kind of strange, especially
because it appears to respond to all requested formats at once. This is not the case, though;
for any particular request, only oneformat gets invoked. The lines inside of the
respond_to block are not executed sequentially, but rather act more like a case statement,
e.g.,

case format

when 'html': # return html

when 'xml': # return xml

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 551 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

For our purposes, the most useful line is format.html, which by default renders the rhtml
template with the same name as the responder. For example, in the show action,
format.html returns the HTML rendered by show.rhtml, as indicated by the comment:

GET /posts

GET /posts.xml

def show

@post = Post.find(params[:id])

respond_to do |format|

format.html # show.rhtml

format.xml { render :xml => @post.to_xml }

end

end

Of course, the whole point is to respond to multiple formats, and the second line in the
respond_to block demonstrates how show responds to XML—in this case, rendering the
post using the to_xml method (which returns a sensible XML string for Active Record
objects). We won't be doing anything with the XML response in this book, but by including
it we allow other people to use it. For example, since XML is a widely understood machine-
readable format, the XML response might be useful to a program seeking to categorize and
search blog posts.
In cases where the action needs do something other than render the default template, we
simply call format.html with a block containing render or redirect_to. For example,
after a successful edit we redirect to the post URL, and after an unsuccessful edit we render
the edit form again (presumably with Active Record error messages)[18]:

[18] Though edit is really a modifier, not an action, the Rails internals don't distinguish between the two. We therefore have to use render :action => "edit" to
render the edit form.

PUT /posts/1

PUT /posts/1.xml

def update

@post = Post.find(params[:id])

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 552 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

respond_to do |format|

if @post.update_attributes(params[:post])

flash[:notice] = 'Post was successfully updated.'

format.html { redirect_to post_url(@post) }

format.xml { head :ok }

else

format.html { render :action => "edit" }

.

.

.

Here we should note that the call to post_url(@post) is the default generated by the
scaffolding command, but it won't work in our case since posts are nested inside blogs. We'll
see in Section 15.3.3 how to do it for real.

15.3. Building the Real Blog
Rails scaffolding got us started thinking about the REST interface, but so far nothing actually
works. It's time to change that by tying blogs and posts together, editing the Posts controller,
cleaning up the views, and integrating the blog management machinery into the RailsSpace
site. We'll take particular care to establish the proper authorization for the various CRUD
actions, as the scaffold-generated code allows any user to edit any other user's blog and
posts.

15.3.1. Connecting the Models
We'll begin building the working blog by defining the relationship between the Blog model
and the Post model. We've laid the foundation for this by including a blog_id attribute in
the Post model (Section 15.2.2), thus making it easy to tell Rails that a post belongs_to a
blog:
file: app/models/post.rb

class Post < ActiveRecord::Base

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 553 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

belongs_to :blog

validates_presence_of :title, :body, :blog

validates_length_of :title, :maximum => DB_STRING_MAX_LENGTH

validates_length_of :body, :maximum => DB_TEXT_MAX_LENGTH

end

While we were at it, we added some basic validations as well.
All we have left is to indicate how blogs are related to posts. Since each blog potentially has
many posts, we use the has_many database association that we first saw in the context of
user friendships in Section 14.3.1:
file: app/models/blog.rb

class Blog < ActiveRecord::Base

belongs_to :user

has_many :posts, :order => "created_at DESC"

end

Since blogs (practically by definition) return posts in reverse-chronological order, we've used
the :order option to tell Active Record that the order of the posts should be "created_at
DESC", where DESC is the SQL keyword for "descending" (which means in this case means
"most recent first").
Recall from Section 14.3.1 that has_many :friendships in the User model gave us an
array of friendships through

user.friendships

In that section, we used this only array indirectly (with the real work being done by
has_many :through), but in this case we will have much use for a list of blog posts. Because
of the has_many :posts declaration, when we have a Blog model object called blog we
get precisely such a list using

blog.posts

Because of the :order option to has_many in the Blog model, these posts automatically
come out in the right order.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 554 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

15.3.2. Blog and Post Routing
Having tied blogs and posts together at the database level, we now need to link them at the
routing level as well. To tell Rails routes that posts belong to blogs, we nest the resources,
like so:
file: app/config/routes.rb

ActionController::Routing::Routes.draw do |map|

map.resources :blogs do |blog|

blog.resources :posts

end

.

.

.

This is the code that makes possible the URLs and helpers shown in Fig. 15.2, such as

/blogs/1/posts/99

With the routing rules defined above, this URL gets associated with the post with id 99 inside
of blog 1. (It's important to realize that this is not the 99th post in blog 1; rather, it's the 99th
post overall, which in this example happens to belong to blog 1.) This routing also arranges
for the proper correspondence between HTTP methods and CRUD operations. For example,
the nested resources ensure that a POST request to

/blogs/1/posts

gets routed to the create method inside the Posts controller.

15.3.3. Posts Controller, for Real
Now that we have arranged for the proper routing of requests, we need to update the
controller to respond appropriately. Amazingly, we barely need to change the default Posts
controller (Section 15.2.3); in fact, there are only six changes (and the last two are trivial):

1. Protect the blog and make @blog: Add a private protect_blog function, and invoke
protect and protect_blog in a before filter (creating @blog as a side-effect)

2. List only the posts for one user, and paginate them: In index, change

@post = Post.find(:all)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 555 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

to

@pages, @posts = paginate(@blog.posts)
3. Create a new post by appending it to the current list of posts: In create, change

@post.save

to

@blog.posts << @post
4. Fix the arguments to the post URL helpers: Globally replace post_url(@post) with

post_url(:id => @post)
5. Add the profile helper: Put helper :profile at the top of the Posts controller so

that we can use hide_edit_links? when displaying posts
6. Add @title to responders that render templates[19]

[19] This involves rendering a little unescaped HTML. If you're really paranoid, you can add a call to h, the HTML escape function, in the title section of
application.rhtml.

With these changes, the final Posts controller appears as follows (compare to the scaffold
version from Section 15.2.3):

class PostsController < ApplicationController

helper :profile

before_filter :protect, :protect_blog

GET /posts

GET /posts.xml

def index

@pages, @posts = paginate(@blog.posts)

@title = "Blog Management"

respond_to do |format|

format.html # index.rhtml

format.xml { render :xml => @posts.to_xml }

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 556 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

end

GET /posts/1

GET /posts/1.xml

def show

@post = Post.find(params[:id])

@title = @post.title

respond_to do |format|

format.html # show.rhtml

format.xml { render :xml => @post.to_xml }

end

end

GET /posts/new

def new

@post = Post.new

@title = "Add a new post"

end

GET /posts/1;edit

def edit

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 557 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

@post = Post.find(params[:id])

@title = "Edit #{@post.title}"

end

POST /posts

POST /posts.xml

def create

@post = Post.new(params[:post])

respond_to do |format|

if @blog.posts << @post

flash[:notice] = 'Post was successfully created.'

format.html { redirect_to post_url(:id => @post) }

format.xml { head :created, :location => post_url(:id => @post) }

else

format.html { render :action => "new" }

format.xml { render :xml => @post.errors.to_xml }

end

end

end

PUT /posts/1

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 558 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

PUT /posts/1.xml

def update

@post = Post.find(params[:id])

respond_to do |format|

if @post.update_attributes(params[:post])

flash[:notice] = 'Post was successfully updated.'

format.html { redirect_to post_url(:id => @post) }

format.xml { head :ok }

else

format.html { render :action => "edit" }

format.xml { render :xml => @post.errors.to_xml }

end

end

end

DELETE /posts/1

DELETE /posts/1.xml

def destroy

@post = Post.find(params[:id])

@post.destroy

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 559 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

respond_to do |format|

format.html { redirect_to posts_url }

format.xml { head :ok }

end

end

private

Ensure that user is blog owner, and create @blog.

def protect_blog

@blog = Blog.find(params[:blog_id])

user = User.find(session[:user_id])

unless @blog.user == user

 flash[:notice] = "That isn't your blog!"
 redirect_to hub_url return false
 end
 end
end

It's worth noting that the RESTful blog id is available as params[:blog_id], which we use
to find @blog in the protect_blog function. Also note that we write post_url(:id =>
@post) instead of post_url(:id => @post.id); the two give the same result, but it
is a common Rails idiom to omit .id in cases like this, since Rails can figure out from context
that we want the post id and not the whole post. (We saw a similar shortcut in Section
14.1.3 when creating Friendship objects.)
The most novel feature in the Posts controller appears in the create action, where we use
the array append operator to push a new post onto the current list of blog posts[20]:

[20] Recall from Section 15.3.1 that the existence of @blog.posts is a consequence of the has_many :posts declaration in the Blog model.

@blog.posts << @post

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 560 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

In this case, @blog.posts is not exactly an array—among other things, it interacts with the
database in a way that no plain array could—but the "append" operation really does
everything that implies: it appends @post to the end of @blog.postsand adds a row to
the posts table in the database corresponding to the given blog (i.e., with blog_id equal
to @blog.id)[21].

[21] This design principle, where an object's "type" is determined by its behavior with respect to certain operations—such as @blog.posts acting like an array—is known
to Rubyists as "duck typing", a term presumably derived from the aphorism that if something looks like a duck, walks like a duck, and quacks like a duck, then it's probably
a duck.

We've replaced the default find in the index modifier—which finds blog posts for all users
—with @blog.posts, which consists only of the posts owned by the logged-in user (and,
thanks to the :order option in the Blog model, they're in the right order to boot). Since
@blog.posts quacks like an array, we can use the paginate function from Section
11.1.4 to split the blog posts into pages. We'll put these paginated posts to good use on the
blog management page in the next section.

15.3.4. Blog Management
Having completed the responders in the Posts controller, all we need to do now is make the
necessary views. We'll start with the index view, which we'll use as a blog management
page. As a first step, let's put a link to the posts index on the user hub using the
posts_path helper (Fig. 15.2):
file: app/views/user/index.rhtml

.

.

.

Friends:

<%= render :partial => "friendship/friends" %>

<hr noshade />

Blog:

<%= link_to "(manage)", posts_path(@blog) %>

</div>

This requires an @blog variable in the User controller index to go along with the spec and
FAQ:
file: app/controllers/user_controller.rb

def index

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 561 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

.

.

@spec = @user.spec ||= Spec.new

@faq = @user.faq ||= Faq.new

@blog = @user.blog ||= Blog.new

end

The blog management page itself is simple. We start with a link to create a new post, which
uses the new_post_path helper created by the nested resources in routes.rb (Fig.
15.2). We then include pagination links (if necessary) and the posts themselves:
file: app/views/posts/index.rhtml

<h2>Your Blog Posts</h2>

<p class="edit_link">

<%= link_to 'Add a new post', new_post_path %>

<%= "| Pages: #{pagination_links(@pages)}" if paginated? %>

</p>
<%= render :partial => "post", :collection => @posts %>

Here we've reused the paginated? function defined in Section 10.4.1. The final line renders
a collection of posts using the post partial. Of course, the post partial doesn't exist yet, but
there aren't any posts yet either so it won't be invoked. After we define the post partial in
Section 15.3.6, the management page will automatically start working.
By the way, Rails tried to help us by creating a posts.rhtml layout file along with the rest
of the scaffolding, but it's rather ugly. We'll remove it so that the management pages will use
the layout in application.rhtml like everything else:

> rm app/views/layouts/posts.rhtml

This leads us to the spartan yet functional blog post management index page, as shown in
Fig. 15.3.

Figure 15.3. Blog post management using the posts index page.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 562 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyc190al9wLmVzcGgxM2MvNW9zX2RhbnB4bGl0Z19p

15.3.5. Creating Posts
Now that we can manage posts, it's probably a good idea to be able to create them. The
target of the "Add a new post" link on the blog management page is a URL of the form

/blogs/1/posts/new

This means that we need to edit the file new.rhtml to make a form suitable for creating
new posts:
file: app/views/posts/new.rhtml

<h2><%= link_to 'Your Blog Posts', posts_path %>: Add a new post</h2>

<% form_for(:post, :url => posts_path) do |form| %>

<fieldset>

<legend>Blog Post Details</legend>

<%= render :partial => "form", :locals => { :form => form } %>

<%= submit_tag "Create", :class => "submit" %>

</fieldset>

<% end %>

This uses a simple form partial (which we'll reuse on the edit page)[22]:

[22] Elsewhere on RailsSpace, we've always used a string as the argument to error_messages_for, but the scaffolding uses a symbol in this context. This is one of the
many cases where either works fine (as discussed in Section 6.4.2).

file: app/views/posts/_form.rhtml
<%= error_messages_for :post %>

<%= text_field_for form, "title", 60 %>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 563 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<div class="form_row">

<label for="body">Body:</label>

<%= form.text_area :body, :rows => 20, :cols => 60 %>

</div>

We can get to the post creation page by clicking on the "Create a new post" link on the
management page, which gives us Fig. 15.4. The simple act of clicking on a link might seem
trivial, but let's analyze it from a REST perspective. According to Fig. 15.2, issuing a GET request
to the URL

/blogs/1/posts/new

Figure 15.4. The blog post creation page.

[View full size image]

yields a page suitable for creating a new post. Since GET is the default HTTP method when
following a link, this is precisely the page we get by clicking on "New post".

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 564 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyc190LmVwdGFzcGgxNGMvNW9zX2Vfcmp0YWNscF9pZw--

Now look at the target URL of the form itself. Since the new template uses the helper
posts_path to make this URL, the target looks something like

/blogs/1/posts

If we were to click on a link to this URL (such as the "Manage blog" link on the user hub), the
resulting GET request would return the posts index. But the default HTTP method for a form
is POST, so clicking on the "create" button issues a POST request to the target URL. According
to Fig. 15.2, this request gets routed to the create action in the Posts controller, thereby
creating the post as required[23].

[23] Sorry for all the Post post POST verbiage. It's not our fault that the HTTP spec and blogs both use the same word.

Thanks to our efforts in Section 15.3.3, the create action is ready to go, so the resulting post
creation page is already live on the back-end. Because we generated scaffolding for the Posts
resource, the form even works: upon entering a title and some text and clicking "Create", our
new post gets rendered by the show scaffold (Fig. 15.5).

Figure 15.5. The default show page.

[View full size image]

15.3.6. Showing Posts
The scaff show view is better than nothing, but it's certainly not sufficient for use on
RailsSpace. Let's fix it up, and in the process define the post partial. We'll start by defining
some simple CSS style rules (which we put inside profile.css since we think of blogs as
part of user profiles):
file: public/stylesheets/profile.css

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 565 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyc190bGRwdXdzcGgxNWMvNW9zX29laHRfZnNhX19pYWpsZ3AudA--

/* Blog Styles */

.post {

display: block;

margin-bottom: 1.5em;

}

.post_title {

font-weight: bold;

}

.post_body {

padding: 1em;

}

.post_creation_date, .post_modification_date {

text-align: right;

}

.post_actions {

float: right;

}

We next replace the scaffolding page with a customized version:
file: app/views/posts/show.rhtml

<h2> <%= link_to 'Your Blog Posts', posts_path %>:

Show One Post</h2>

<%= render :partial => "post" %>

This renders the post partial:
file: app/views/posts/_post.rhtml

<div class="post">

<div class="post_title">

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 566 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<%= sanitize post.title %>

<% unless hide_edit_links? %>

<%= link_to_unless_current 'Show', post_path(post.blog, post) %> |

<%= link_to_unless_current 'Edit', edit_post_path(post.blog, post) %> |

<%= link_to 'Destroy', post_path(post.blog, post),

:confirm => 'Are you sure?', :method => :delete %>

<% end %>

</div>

<div class="post_body"><%= sanitize post.body %></div>

<div class="post_creation_date">

Posted <%= time_ago_in_words post.created_at %> ago

<% if post.updated_at != post.created_at %>

 Modified <%= time_ago_in_words post.updated_at %> ago

<% end %>

</div>

</div>

Here we have used time_ago_in_words helper, which converts a Time object to a verbal
description such as "about one hour ago", as well as the sanitize function from Section
9.5. The result (for a relatively new post) appears in Fig. 15.6. Now that the post partial has
been defined, the blog management page from Section 15.3.4 works as well (Fig. 15.7).

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 567 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Figure 15.6. Styled show page.

[View full size image]

Figure 15.7. Index page with a couple of blog entries added.

[View full size image]

Note that the post partial includes a link to the destroy action for the post. So far, we've
only hit our RESTful URLs with GET requests (through normal links) and POST requests
(through form submission), but according to the principles of REST we should issue an HTTP

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 568 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyc190X2ZwZHdzcGgxNmMvNW9zX29paGFfeHNlbF9pdGcucGo-
http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyc190LjJwdHRzcGgxN2MvNW9zX3NfaWpfYWxscF9pZw--

DELETE request to destroy a resource. If you look closely at the link to "Destroy", you'll see
that we pass link_to the option

:method => :delete

This overrides the default GET method, simulating[24] a DELETE request instead, so that clicking
on the link destroys the corresponding post.

[24] As noted briefly in Section 15.1.1, web browsers don't currently support DELETE. Exactly how Rails arranges to simulate DELETE isn't particularly important, though we
should mention that it won't work if the user has JavaScript disabled in his browser. If you need to support JavaScript-disabled browsers, you can use a form with the
option :method => :delete; see Section 15.3.7 for more information.

15.3.7. Editing Posts
We can now create, show (read), and delete blog posts, which gives us CRD. To fill in the U,
we'll finish by making the post edit page. Because of our efforts on the post creation page,
constructing an edit view is simple, apart from one subtlety:
file: app/views/posts/edit.rhtml

<h2><%= link_to 'Your Blog Posts', posts_path %>: Edit Post</h2>

<%= render :partial => "post" %>

<% form_for(:post, :url => post_path(:id => @post),

:html => { :method => :put }) do |form| %>

<fieldset>
 <legend>Edit Post</legend>
 <%= render :partial => "form", :locals => { :form => form } %>
 <%= submit_tag "Update", :class => "submit"
%> </fieldset>
<% end %>

The resulting page (Fig. 15.8) is essentially identical to the creation page, but it's worth noting
the first appearance of the funky semicolon syntax for the edit modifier.

Figure 15.8. The post edit form (with a funky semicolon URL).

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 569 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyc190cGFwdGpzcGgxOGMvbzVzX2lsZGdfdGUuX2k-

The subtlety alluded to above is the line

:html => { :method => :put }

This ensures that the form submits using the PUT method instead of the usual POST[25]. In
keeping with the correspondence between HTTP methods and CRUD operations, the
resulting PUT request gets routed to the update action in the Posts controller. Since that
action has already been defined—it is, in fact, the default scaffold action—the edit page is
good to go. This means that we're done—our RESTful blog is now full of CRUD!

[25] As noted in Section 15.1.1, browsers don't actually support PUT; Rails fakes it with a hidden input form field. Forms can also send DELETE requests—just replace :put
with :delete. This technique would replace the user-friendly destroy links with more obtrusive destroy buttons, but it has the virtue of working even when JavaScript is
disabled.

15.3.8. Publishing Posts
Having a blog doesn't do anyone much good if it never gets published, so to wrap things up
we'll put the blog posts on the user profile and the hub. To do this, we need to add @blog

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 570 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

instance variables and paginated posts to both the Profile controller's show action and the
User controller's index action. Doing this in both places results in uncomfortably redundant
code, so we have factored all the shared variable assignments into a common method in the
Application controller:
file: app/controllers/application.rb

.

.

.

def make_profile_vars

@spec = @user.spec ||= Spec.new

@faq = @user.faq ||= Faq.new

@blog = @user.blog ||= Blog.new

@pages, @posts = paginate(@blog.posts, :per_page => 3)

end

.

.

.

(We've restricted the number of posts per page to 3 since the default of 10 is a bit too many
posts for our taste.) A call to make_profile_vars then gets added in both places:
file: app/controllers/profile_controller.rb

def show

@hide_edit_links = true

screen_name = params[:screen_name]

@user = User.find_by_screen_name(screen_name)

if @user

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 571 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

make_profile_vars

else

.

.

.

end

end

and
file: app/controllers/user_controller.rb

def index

@title = "RailsSpace User Hub"

@user = User.find(session[:user_id])

make_profile_vars

end

Now that we have the pages of posts stored as instance variables, displaying the blog is a
piece of cake since we already have a post partial. There's a little bit of presentation logic to
make the language come out right, but otherwise this blog partial is closely related to the
display partials from Chapters 10 and 11:
file: app/views/profile/_blog.rhtml

<div id="blog">

<p>

<% if paginated? %>

<% first = @pages.current_page.first_item %>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 572 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<% last = @pages.current_page.last_item %>

<% if first == last %>

Post <%= last %> of

<% else %>

 Posts <%= first %>–<%= last %> of
 <% end %>
 <% end %>
 <%= pluralize(@blog.posts.count, "blog post") %>
 </p>

 <%= render :partial => "posts/post", :collection => @posts %>
 <%= "Pages: #{pagination_links(@pages)}" if paginated? %>
</div>

The embedded Ruby will produce sensible results such as "0 blog posts", "Posts 4–6 of 7 blog
posts", and "Post 7 of 7 blog posts" as the number of posts grows.
To complete the blog display, we simply render the blog partial on the profile and the hub:
file: app/views/profile/show.rhtml

.

.

.

Friends:

<%= render :partial => "friendship/friends" %>

<% unless @blog.posts.empty? %>

<hr noshade />

Blog: <%= render :partial => "blog" %>

<% end %>

</div>

and
file: app/views/user/index.rhtml

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 573 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

Friends:

<%= render :partial => "friendship/friends" %>

<hr noshade />

Blog:

<%= link_to "(manage)", posts_path(@blog) %>

<%= render :partial => "profile/blog" %>

</div>

The result for the profile page appears in Fig. 15.9.

Figure 15.9. The blog on the profile page.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 574 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyaWxmZWdwZ2xzcGgxOWMvNXJvX2JfX19vcGVhMV9pXy5hcGp0Z2w-

15.3.9. One Final Niggling Detail
Before we leave the RESTful blog, there's one small problem with post creation that we'd like
to address: currently, if you (accidentally) click twice on the "Create" button, it will make two
identical posts. In fact, there is probably enough delay in processing the request that you
can continue clicking the button to create an arbitrarily large number of posts[26]. Perhaps a
user who does this gets what he deserves, but it would be nice to be able to prevent such
unfortunate behavior at the application level. (We'll apply these ideas again in Section
16.2.2, where users plagued by duplicate comments most assuredly don't get what they
deserve.)

[26] This problem is not particular to our implementation; Rails scaffolding suffers from the same defect.

What we want to do is define a duplicate? method in the Post model, so that in the
create action we can test for a duplicate post before adding it to the blog:
file: app/controllers/posts_controller.rb

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 575 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

.

def create

@post = Post.new(params[:post])

@post.blog = @blog

respond_to do |format|

if @post.duplicate? or @blog.posts << @post

flash[:notice] = 'Post was successfully created.'

format.html { redirect_to post_url(:id => @post) }

.

.

.

Here we've arranged for a silent failure for a duplicate post. If the user double-clicks the
"Create" button, we assume that it's a mistake, and as far as he's concerned the form will
appear to work normally.
The implementation of duplicate? uses one of the synthesized find methods to see if
the current blog already has a post with the same title and body:
file: app/models/post.rb

class Post < ActiveRecord::Base

.

.

.

Prevent duplicate posts.

validates_uniqueness_of :body, :scope => [:title, :blog_id]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 576 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Return true for a duplicate post (same title and body).

def duplicate?

post = Post.find_by_blog_id_and_title_and_body(blog_id, title, body)

Give self the id for REST routing purposes.

self.id = post.id unless post.nil?

not post.nil?

end

end

The call to find needs the post's blog id, which is why we added @post.blog = @blog
at the top of the create action. In addition, we set self.id to the id of the post (if found);
this is because the redirect in create needs a post id:

format.html { redirect_to post_url(:id => @post) }

While we were at it, we included a uniqueness validation, which (via the :scope option)
ensures that posts with the same body, title, and blog id won't get saved to the database.
This way, we are protected against duplicate posts at the model level—even a bug in
duplicate? or a rogue console session won't spoil our pristine posts table. (Experience
shows that such a belt-and-suspenders approach prevents all manner of trouble.)

15.4. RESTful Testing
The only thing left to do for our RESTful blog is testing. The generated model tests are
essentially blank, with only the trivial assert true test, but the Posts controller test is full
of useful assertions created by generate scaffold_resource. Just to get a sense of
what the scaffolding gives us, let's take a look at one of the generated tests:
file: test/functional/posts_controller_test.rb

class PostsControllerTest < Test::Unit::TestCase

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 577 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

def test_should_create_post

old_count = Post.count

post :create, :post => { }

assert_equal old_count+1, Post.count

assert_redirected_to post_path(assigns(:post))

end

.

.

.

end

This uses the Active Record class method count to test the post count before and after post
creation.
There are two unfortunate things about these tests: first, they all use an utterly superfluous
should_ naming convention; second, and perhaps more seriously, they all break. This is
mainly because, as a result of our nested resources, the Posts controller responders need to
know which blog the post belongs to. (Since the Post model has some validations, we also
have to be careful about making valid posts.) In this section, we'll address both the cosmetic
issue and the serious breakage, as well as adding two custom tests of our own.

15.4.1. Default REST Functional Tests
We'll take a look at the Posts controller functional tests momentarily, but first Rails has a nice
surprise in store for us: because we gave so much information about the data model when
we created the scaffold, Rails has generated a totally serviceable posts.yml fixture file for
us. Let's take a look at it:
file: test/fixtures/posts.yml

one:

id: 1

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 578 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

blog_id: 1

title: MyString

body: MyText

created_at: 2007-01-16 15:34:32

updated_at: 2007-01-16 15:34:32

two:

id: 2

blog_id: 1

title: MyString

body: MyText

created_at: 2007-01-16 15:34:32

updated_at: 2007-01-16 15:34:32

We then add to this the almost comically simple blogs fixture:
file: test/fixtures/blogs.yml

one:

id: 1

user_id: 1

two:

id: 2

user_id: 1

With that, we're ready for the tests. They check for the existence of the pages and for the
proper responses to the HTTP methods, and are just slightly fixed-up versions of the scaffold

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 579 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

tests. As you might guess, the get and post functions are joined by their RESTful brethren
put and delete, and all get put to good use:
file: test/functional/posts_controller_test.rb

.

.

.

class PostsControllerTest < Test::Unit::TestCase

fixtures :posts, :blogs, :users

def setup

@controller = PostsController.new

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

@user = users(:valid_user)

authorize @user

@post = posts(:one)

@valid_post = { :title => "New title", :body => "New body" }

end

def test_get_index

get :index, :blog_id => @post.blog

assert_response :success

assert assigns(:posts)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 580 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

def test_get_new

get :new, :blog_id => @post.blog

assert_response :success

end

def test_create_post

old_count = Post.count

post :create, :blog_id => @post.blog, :post => @valid_post

assert_equal old_count+1, Post.count

 assert_redirected_to post_path(:id => assigns(:post))
 end

 def test_show_post
 get :show, :blog_id => @post.blog, :id => @post
 assert_response :success
 end

 def test_get_edit
 get :edit, :blog_id => @post.blog, :id => @post
 assert_response :success
 end

 def test_update_post
 put :update, :blog_id => @post.blog, :id => @post, :post => @valid_post
 assert_redirected_to post_path(:id => assigns(:post))
 end

 def test_destroy_post
 old_count = Post.count
 delete :destroy, :blog_id => @post.blog, :id => @post
 assert_equal old_count-1, Post.count
 assert_redirected_to posts_path
 end
end

Note that we've used the trusty search-and-replace function of our text editor to eliminate
those annoying should_s.
Since we've migrated since the last test, we have to prepare the test database again:

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 581 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

> rake db:test:prepare

Then we're ready to run the tests:

> ruby test/functional/posts_controller_test.rb

Loaded suite test/functional/posts_controller_test

Started

.......

Finished in 1.820859 seconds.

7 tests, 13 assertions, 0 failures, 0 errors

15.4.2. Two Custom Tests
We'll end by adding a couple of tests for the changes we made to the Posts controller. First,
we'll test to make sure that the protect before filter is in place:
file: test/functional/posts_controller_test.rb

.

.

.

def test_unauthorized_redirected

Deauthorize user

@request.session[:user_id] = nil

[:index, :new, :show, :edit].each do |responder|

get responder

assert_response :redirect

assert_redirected_to :controller => "user", :action => "login"

end

end

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 582 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

Second, we'll test the protect_blog before filter:
file: test/functional/posts_controller_test.rb

.

.

.

def test_catch_blog_id_mismatch

Be some other user.

authorize users(:friend)

put :update, :blog_id => @post.blog, :id => @post, :post => @valid_post

assert_response :redirect

assert_redirected_to hub_url

assert_equal "That isn't your blog!", flash[:notice]

end

.

.

.

Running the tests gives

> ruby test/functional/posts_controller_test.rb

Loaded suite test/functional/posts_controller_test
Started
.........
Finished in 1.82027 seconds.

9 tests, 24 assertions, 0 failures, 0 errors

That's 24 assertions for relatively little work. There's plenty more to test, but this is a great
start.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 583 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

16. Blog comments with Ajax

In this chapter, we extend the RailsSpace blog engine by allowing users to comment on blog
posts. After all our hard work on RESTful blogs and posts in Chapter 15, comments by
themselves are relatively straightforward, so we'll keep things interesting by using Ajax to
implement them. Since our comments are RESTful as well, we'll have a chance to see how
nicely REST and Ajax play together.
Although there are plenty of useful new techniques in this chapter, including several Rails
Ajax helpers and the remarkable Ruby JavaScript (RJS), we should note that there is a layer of
code that we will not explain. We will peek under the hood to see some of the code that
produces the Ajax effects, but ultimately the actual implementation—written in JavaScript
using a couple of slick JavaScript libraries—will remain mysterious. Some of the libraries we'll
be using are fabulous, miraculous, and, even, ahem, "scriptaculous", and we bow to the
JavaScript gods behind these tools.

16.1. RESTful Comments
Our first order of business will be to create and configure the Comments resource, which
includes defining nested routes and a Comment model. As we'll see, we will only be creating
and destroying comments, so we won't be getting quite as much out of the CRUD aspects
of REST as we did with posts[1]. On the other hand, being able to respond to multiple formats
will be highly useful—one of the formats supported by REST is JavaScript, which we will put
to good use when responding to Ajax requests.

[1] We will "read" comments by calling a comment partial from the post partial, but we won't be using the RESTful read in the Comments controller.

16.1.1. Comments Resource
As in the case of RESTful blogs and posts, our first step is to generate a resource for the
comments:

> ruby script/generate resource Comment \

user_id:integer post_id:integer body:text created_at:datetime

exists app/models/
exists app/controllers/
exists app/helpers/
create app/views/comments

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 584 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

exists test/functional/
exists test/unit/
create app/models/comment.rb
create app/controllers/comments_controller.rb
create test/functional/comments_controller_test.rb
create app/helpers/comments_helper.rb
create test/unit/comment_test.rb
create test/fixtures/comments.yml
create db/migrate
create db/migrate/010_create_comments.rb
 route map.resources :comments

Note that we are not creating scaffolding because comments will be seamlessly integrated
with the blog through the magic of Ajax. We won't need any views apart from a few partials,
and we'll be making the necessary REST responders by hand.
Since comments naturally belong to both users and posts, we've included an id for each in
the data model. Since we included the columns on the command line, our migration is ready
to go:
file: db/migrate/010_create_comments.rb

class CreateComments < ActiveRecord::Migration

def self.up

create_table :comments do |t|

t.column :user_id, :integer

t.column :post_id, :integer

t.column :body, :text

t.column :created_at, :datetime

end

end

def self.down

drop_table :comments

end

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 585 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Rake the migration as usual:

> rake db:migrate

16.1.2. Comment Model and Associations
Now we're ready to tie the user, post, and comment models together. As indicated above,
each comment belongs to both a user and a post:
file: app/models/comment.rb

class Comment < ActiveRecord::Base

belongs_to :user

belongs_to :post

validates_presence_of :body, :post, :user

validates_length_of :body, :maximum => DB_TEXT_MAX_LENGTH

Prevent duplicate comments.

validates_uniqueness_of :body, :scope => [:post_id, :user_id]

Return true for a duplicate comment (same user and body).

def duplicate?

c = Comment.find_by_post_id_and_user_id_and_body(post, user, body)

Give self the id for REST routing purposes.

self.id = c.id unless c.nil?

not c.nil?

end

Check authorization for destroying comments.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 586 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

def authorized?(user)

post.blog.user == user

end

end

Here we've included a body uniqueness validation and a duplicate? method, which we
use in Section 16.2.2 to prevent the creation of duplicate comments in the same way we
prevented duplicate posts in Section 15.3.9. We've also added an authorized? method,
which we'll use in Section ?? when deleting comments.
Having indicated that a comment belongs_to a post, we need to indicate that a post
has_many comments. There is a slight complication, though: it doesn't make any sense to
have a comment without a post. In particular, since we have given users the capability to
delete their posts (Section 15.3.7), we need to be sure to delete all of the post's comments
when the post itself is deleted. We could do this by hand by iterating through
post.comments and destroying each one in turn, but we don't have to. Rails lets us build
the necessary relationship right into the model by indicating that a post
has_manydependent comments, and that we should destroy each of them if the post itself
is destroyed:
file: app/models/post.rb

class Post < ActiveRecord::Base

belongs_to :blog

has_many :comments, :order => "created_at", :dependent => :destroy

.

.

.

This is an incredibly compact way to keep our database shiny—when we call
@post.destroy, all of the corresponding comments will automatically be destroyed as
well[2].

[2] Since it uses destroy, this method has the advantage of running the model validations and callbacks (Section 14.1.5), but it is potentially inefficient since it requires a
separate SQL call for each object destroyed. In contrast, the option :dependent => :delete_all uses a single SQL statement to perform all the deletions at once,
which may be preferable if the validitions and callbacks don't have to be invoked before object destruction.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 587 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Though we won't need it in this book, it does no harm to tell the User model that it
has_many comments:
file: app/models/user.rb

class User < ActiveRecord::Base

has_one :spec

has_one :faq

has_one :blog

has_many :comments, :order => "created_at DESC", :dependent => :destroy

.

.

.

This would be useful if we ever wanted to list all the comments made by a particular user.
Just to be paranoid, we've included the :dependent => :destroy in case we ever have
occasion to destroy users.

16.1.3. The Comments Controller and a Preemptive Partial
Though we're not yet ready to write its responders, we can already guess some things about
the Comments controller. We'll plan to allow only registered users to comment on blogs, so
we include the protect function in a before filter[3]. We also expect to need the comment's
parent post, so we'll include a load_post function in the before filter:

[3] It would be easy to make this more restrictive by allowing only a user's friends to leave comments, or even make it less restrictive by allowing anyone to comment, but
we think that this is a nice middle ground.

file: app/controllers/comments_controller.rb
class CommentsController < ApplicationController

helper :profile, :avatar

include ProfileHelper

before_filter :protect, :load_post

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 588 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

private

def load_post

@post = Post.find(params[:post_id])

end

end

We plan to redirect back to the blog owner's profile after comment creation using
profile_for, so we've included ProfileHelper. The partial for displaying comments
also uses profile_for, along with thumbnail_tag to display the avatar thumbnail, so
we have included the profile and avatar helpers as well[4].

[4] Yes, it is annoying that we need both include ProfileHelper and helper :profile.

Though we don't yet have any comments, that doesn't mean we can't define a comment
partial preemptively:
file: app/views/comments/_comment.rhtml

<div id="comment_<%= comment.id %>" class="comment">

<hr noshade />

<%= link_to thumbnail_tag(comment.user), profile_for(comment.user) %>

<%= link_to comment.user.name, profile_for(comment.user) %>

commented

<%= time_ago_in_words comment.created_at %> ago:

<p>

<%= sanitize comment.body %>

</p>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 589 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

</div>

We've indicated the author of a comment by displaying the commenter's name linked to the
commenter's profile, both of which use the comment.user variable produced by
belongs_to :user. Note that we've arranged for each comment to have a unique CSS id
by including the comment id in the enclosing div:

<div id="comment_<%= comment.id %>" class="comment">

This foreshadows the use of Ajax, which finds and manipulates elements of the page using
the unique CSS ids.
We'll finish the partial by adding a few CSS rules for the comment partial:
file: public/stylesheets/profile.css

.

.

.

/* Comment Styles */

.comment {

min-height: 90px;

}

.thumbnail {

display: block;

float: left;

margin-right: 1em;

}

16.1.4. Routing Comments
Before moving on to Ajax, we need to edit the routes file so that RESTful comments get routed
correctly. Much like posts were resources of blogs, comments are resources of posts, so they
get nested as follows:
file: config/routes.rb

ActionController::Routing::Routes.draw do |map|

map.resources :blogs do |blog|

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 590 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

blog.resources :posts do |post|

post.resources :comments

end

end

.

.

.

This leads to the usual REST responders and helpers (Fig. 16.1), though in our case we will be
using only a small subset of these.

Figure 16.1. Nested resources for RESTful blog comments.

Responder URL path Helper function

Action

create /blogs/1/posts/99/comments comments_path(1, 99)

show /blogs/1/posts/99/comments/1 comment_path(1, 99, 1)

update /blogs/1/posts/99/comments/1 comment_path(1, 99, 1)

destroy /blogs/1/posts/99/comments/1 comment_path(1, 99, 1)

Modifier

index /blogs/1/posts/99/comments comments_path(1, 99)

new /blogs/1/posts/99/comments/new new_comment_path(1, 99)

edit /blogs/1/posts/99/comments/1;edit edit_comment_path(1, 99, 1)

comment_path(1, 99, 1) and comment_path(:blog_id => 1, :post_id => 99, :id => 1) are equivalent.

Inside /blogs/1/posts/99, the blog and post id can be omitted in the helper.

In this case, comments_path and comment_path(:id => 1) (but not comment_path(1))
all work.

Each path helper has a corresponding URL helper that returns the full URL.

For example, comment_url(1, 99, 1) gives http://localhost:3000/blogs/1/posts/99/
comments/1.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 591 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

16.2. Beginning Ajax
Typically, changing the contents of a web page involves the user performing some action
(such as clicking a link or submitting a form) and then waiting for a response from the server,
which returns a new page to the browser. Ajax[5] refers to the practice of making asynchronous
calls to the server to update only part of the page, without a full refresh. In contemporary
usage the term Ajax is actually more general than this: it is also applied to dynamic HTML
effects that don't require asynchronous calls to the server (or indeed any server calls all). In
this more general sense, we can think of Ajax as an umbrella term for making web applications
more interactive and responsive[6].

[5] For "Asynchronous JavaScript and XML"; Jesse James Garrett coined the term in "Ajax: A New Approach to Web Applications", http://www.adaptivepath.com/publications/
essays/archives/000385.php.

[6] In other words, making browsers suck less, as Dave Thomas and Mike Clark are fond of saying.

The actual implementation of Ajax effects—at least, the ones that depend on asynchronous
server calls—depends on a JavaScript object called XMLHttpRequest, or XHR. It is XHR that
sends requests to the server in response to actions in the browser such as mouse clicks or
mouseovers, and then handles the response. Actually creating and manipulating XHR objects
is somewhat complicated, so it's no surprise that we have a choice of several JavaScript
frameworks to take care of the details for us. One of the most popular of these projects is
Prototype, which (though it can stand alone) integrates seamlessly with Rails. Indeed,
Prototype has been developed in parallel with Rails virtually from the start, and a couple of
the principal Prototype developers are also on the core team behind Rails. Most of the support
Rails provides for Ajax is an abstraction layer on top of Prototype, which in turn is an
abstraction layer on top of JavaScript. The result is that we can harness the power of Ajax
without ever leaving Ruby.
Of course, somehow we have to include Prototype in our application—but this is, in fact,
already done. You may recall that back in Section 6.2.2, while polishing up the debug
information at the bottom of each page, we added the following line to the RailsSpace layout:
file: app/views/layouts/application.rhtml

.

.

.

<%= javascript_include_tag :defaults %>

.

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 592 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php

This automatically includes Prototype, along with several other useful JavaScript libraries
that come bundled with Rails. (If we only wanted Prototype, we could use

<%= javascript_include_tag 'prototype' %>

instead.) We'll see an example of what a Prototype function looks like in the next section.

16.2.1. New Comments
It's time now to dig into the details of creating new comments using Ajax. Our goal in this
section is to have a comment creation form appear magically when the user clicks an "Add
a comment" link. There are a lot of things going on at once here, but be patient: by the end
of the section we will have covered the basics of Ajax.
The structure of a typical Ajax-ready page consists of page elements (most commonly divs)
with unique CSS ids, which allow JavaScript to find and manipulate those elements using
the Document Object Model (DOM). In our case, we'll add three divs at the end of the post
partial defined in Section 15.3.6, one each for the comments themselves, the "Add a
comment" link, and a form for creating new comments:
file: app/views/posts/_post.rhtml

.

.

.

<div id="comments_for_post_<%= post.id %>">

<%= render :partial => "comments/comment", :collection => post.comments %>

</div>

<% if logged_in? %>

<div id="add_comment_link_for_post_<%= post.id %>">

<%= link_to_remote "Add a comment",

:url => new_comment_path(post.blog, post),

:method => :get %>

</div>

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 593 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<div id="new_comment_form_for_post_<%= post.id %>">

</div>

<% end %>

</div>

Because we've given each of the divs an id based on the Active Record id of the corresponding
object, they are guaranteed to be unique.
This addition to the post partial also contains our first Ajax helper function,
link_to_remote. This works much like the link_to function, but instead of linking to a
URL it links to an Ajax call. To better understand this function, let's take a look at the source
generated by the post partial:

.

.

.

<div id="comments_for_post_1">

</div>

<div id="add_comment_link_for_post_1">

<a href="#" onclick="new Ajax.Request('/blogs/1/posts/1/comments/new',

{asynchronous:true, evalScripts:true, method:'get'});

return false;">Add a comment

</div>

<div id="new_comment_form_for_post_1">

</div>

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 594 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

.

We're not in a position to understand all the details, but we can see that an Ajax request has
been associated with the onclick attribute of the "Add a comment" link, whose target is
the RESTful URL for the new responder in the Comments controller. This means that when a
user clicks on the link, it will send a GET request to that URL. It's important to note that the
default method for link_to_remote is POST; since new responds to GET but not to POST
(Fig. 16.1), we have to pass link_to_remote the option :method => :get.
To get the "Add a comment" link to work, we need to define a new modifier in the Comments
controller that responds to the Ajax request. The first thing to notice is that, just as we used
format.html to respond to requests for HTML, we can use format.js to respond to
requests for JavaScript:
file: app/controllers/comments_controller.rb

def new

@comment = Comment.new

respond_to do |format|

format.js do

render :update do |page|

page.hide "add_comment_link_for_post_#{@post.id}"

page.replace_html "new_comment_form_for_post_#{@post.id}",

:partial => "new"

end

end

end

end

The response uses render :update, a new aspect of render that returns JavaScript to
update the page making the XHR request. In this case, we give render :update a block
as an argument, which uses inline RJS to generate code to hide the comment link and replace
the HTML inside the new comment form div with a comment creation form (defined below).

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 595 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

As a concrete example, consider the code returned in response to an XHR request for post
1:

page.hide "add_comment_link_for_post_#{@post.id}"

page.replace_html "new_comment_form_for_post_#{@post.id}",

:partial => "new"

generates the JavaScript[7]

[7] These JavaScript functions are part of Prototype.

Element.hide("add_comment_link_for_post_1")

Element.update("new_comment_form_for_post_1", <HTML from _new.rhtml>)

where the second argument to Element.update is the HTML to make a form for posting
a new comment. The new responder returns this JavaScript to the browser to be executed,
thereby hiding the add comment link and adding a comment creation form to the page.
The form for creating a new post—that is, the HTML used to update the
"new_comment_form_for_post_1" div—is straightforward, except for one detail:
file: app/views/comments/_new.rhtml

<% remote_form_for(:comment, :url => comments_path) do |form| %>

<fieldset>

<legend>New Comment</legend>

<%= form.text_area :body, :rows => 10, :cols => 40 %>

<%= submit_tag "Create" %>

</fieldset>

<% end %>

This is exactly the same kind of form we would define to create a new comment without Ajax,
with one crucial difference: just as we used link_to_remote in place of link_to, we've
used remote_form_for in place of the traditional form_for. This arranges to use XHR to
submit an asynchronous request to create a comment. As with form_for,
remote_form_for submits a POST request by default, which creates a post when it hits
the URL comments_path (Fig. 16.1).
Since this section introduced our first Ajax effects, it's taken us a while to get to the payoff,
but it's pretty sweet when we finally arrive. Now clicking on the "Add a comment" link for a
particular blog post magically creates a comment form right on the page (Fig. 16.2).

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 596 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Figure 16.2. The "Add a comment" link becomes the comment form through the magic of Ajax.

[View full size image]

16.2.2. Comment Creation
The next step is to make the comment form live by defining the create action, so that we
can create new comments by sending POST requests to URLs such as

/blogs/1/posts/99/comments

As in the case of the new modifier, the create action will respond to JavaScript using
format.js. In this case, as in the case of the Posts controller's create action (Section
15.3.9), we protect against duplicate comments by using duplicate?:
file: app/controllers/comments_controller.rb

def create

@comment = Comment.new(params[:comment])

 @comment.user = User.find(session[:user_id])
 @comment.post = @post

 respond_to do |format|
 if @comment.duplicate? or @post.comments << @comment
 format.js do

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 597 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyY29fal9wLm5zbmgxMmMvNmV3X2VhbXB0bG10Z19p

 render :update do |page|
 page.replace_html "comments_for_post_#{@post.id}",
 :partial => "comments/comment",
 :collection => @post.comments
 page.show "add_comment_link_for_post_#{@post.id}"
 page.hide "new_comment_form_for_post_#{@post.id}"
 end
 end
 else
 format.js { render :nothing => true }
 end
 end
end

The @comment assignments at the top of create ensure that duplicate? has all the ids
it needs (Section 16.1.2)[8].

[8] As a result, we could actually replace the array append operation with a simple @comment.save, but we find the former more suggestive.

The RJS in this case restores the "Add a comment" link using page.show (the inverse of
page.hide), while replacing the HTML in the comments div with the result of rendering all
of the comments again. A second possibility would be to use

page.insert_html :bottom, "comments_for_post_#{@post.id}",

:partial => "comments/comment"

to insert the new comment at the bottom of the comments list. The reason we elected to re-
render all the comments is because someone else might have submitted a comment while
we were filling out ours; this way, each user always gets to see all the comments.
In the case of an invalid comment (e.g., a blank body), we still need something to respond
to the request. Since keeping the form on the page is a sensible behavior, we can just render
nothing with

render :nothing => true

Figure 16.3. The form goes away and the comment shows up.

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 598 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyZW5tdGVwbGRzY2gxM2MvNm9tX2FkXy5kX3Rhal9pcGc-

This silent error assumes that the user can figure out the problem if he tries to submit a blank
comment[9].

[9] If we wanted to, we could add an errors div above the form div, and then use page.replace_html to fill it with error_messages_for(:comment) to display the
Active Record validation errors.

16.2.3. Destroying Comments
From the typical user's point of view, comments are permanent (be careful what you say!),
but we do want to give users control over their own blogs by letting them delete comments.
This is easy with link_to_remote and destroy.
Recall from Section 16.2.1 that we made a link to a new comment form using

<%= link_to_remote "Add a comment",

:url => new_comment_path(post.blog, post),

:method => :get %>

This hits URLs of the form

/blogs/1/posts/99/comments/new

with a GET request. Following the conventions of REST (Fig. 16.1), to destroy a comment with
id 1 we should submit an HTTP DELETE request to a URL of the form

/blogs/1/posts/99/comments/1

This suggests the code[10]

[10] We always have trouble deciding whether to name links such as this "delete" (following the HTTP method and SQL command) or "destroy" (following the Rails REST
action). We went with "delete" this time.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 599 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<%= link_to_remote "(delete)",

:url => comment_path(comment.post.blog, comment.post, comment),

:method => :delete,

:confirm => 'Are you sure?' %>

Note how easy it is to construct the full RESTful URL using the Comment model associations
[11].

[11] Since each comment knows its own post and blog, it would be nice if we could write comment_path(:id => comment) and have Rails figure out the rest. We don't
see any reason why this couldn't be added to Rails at some point. Such a function wouldn't work in general, though, since it would require each comment to belong to only
one post and to only one blog. Rails supports database associations that violate this condition—in particular, habtm, or has_and_belongs_to_many. (On the other
hand, when you think always in terms of CRUD you usually find habtm to be unnecessary.)

The delete link itself is part of the comment partial; it gets displayed if the user is both logged
in and authorized to delete the comment:
file: app/views/comment/_comment.rhtml

<div id="comment_<%= comment.id %>" class="comment">

<hr noshade />

<% if logged_in? and comment.authorized?(User.find(session[:user_id])) %>

<%= link_to_remote "(delete)",

:url => comment_path(comment.post.blog, comment.post, comment),

:method => :delete,

:confirm => 'Are you sure?' %>

<% end %>

.

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 600 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

</div>

With that code added, a "delete" link appears next to each comment (Fig. 16.4). Clicking on
it sends a DELETE request to the Comments controller, which gets routed to destroy. Before
destroying the comment, we first have to check to make sure that the user is authorized—
although the link only appears for authorized users, there is nothing to prevent a malicious
user from submitting a DELETE request directly. If the user is authorized, we destroy the
comment and respond to the request with JavaScript to remove the comment from the page:
file: app/controllers/comments_controller.rb

def destroy

@comment = Comment.find(params[:id])

user = User.find(session[:user_id])

if @comment.authorized?(user)

@comment.destroy

else

redirect_to hub_url

return

 end

 respond_to do |format|
 format.js do
 render :update do |page|
 page.remove "comment_#{@comment.id}"
 end
 end
 end
end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 601 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Figure 16.4. Blog post comments with "delete" links.

Here page.remove returns a Prototype function to remove the HTML element with the
given id. In the user authorization section, note that we return after redirecting
unauthorized users; recall from Section 6.4.1 that without an explicit return the code after a
redirect still gets executed.

16.3. Visual Effects
In an important sense, we are now done with blog comments. It is true, though, that the Ajax
effects we've used—showing, hiding, and removing elements, and replacing HTML—are
rather simple. In this section we show off some of Ajax's fancier capabilities using
script.aculo.us, a collection of visual effects libraries built on top of Prototype. Since these
effects lead to slightly longer blocks of RJS, they also provide us an opportunity to introduce
RJS files.
It's important to realize that JavaScript is executed by the client, not the serwer, which means
that Ajax is subject to the limitations and idiosyncrasies of the client machines and browsers
[12]. In particular, script.aculo.us effects can be rather resource-intensive, capable of slowing
older computers to a crawl, and they are subject to some of the same browser dependencies
that characterized the bad old days before most browsers were (at least minimally) standards-
compliant. Sometimes it's hard for programmers to realize this, since we tend to use fast
machines and up-to-date browsers, but if you're developing a website for the general public
it's a good idea to keep efficiency and browser compatibility in mind. The material in this
chapter is intended to show what's possible, not necessarily what's best. With Ajax, as with
all other things, just because you can doesn't mean you should.

[12] To minimize the effects of these issues, you should make sure that you have the most recent versions of the default JavaScript libraries by running rake
rails:update:javascripts.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 602 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

16.3.1. RJS Files and the First Effect
Currently, the new comment form simply appears immediately upon clicking the link, but in
this section we'll give it a more dramatic entrance. Take a look at the script.aculo.us demo
page for some of the options:

http://wiki.script.aculo.us/scriptaculous/show/CombinationEffectsDemo

Since script.aculo.us is integrated with Rails (and has already been included in the RailsSpace
layout since it is one of the default JavaScript libraries), we can use script.aculo.us effects
through the visual_effect method on the page object. For the comment form, we'll go
with the "blind_down" effect, which will make the form appear by sliding down as if it were
a window blind:
file: app/controllers/comments_controller.rb

def new

@comment = Comment.new

respond_to do |format|

format.js do

render :update do |page|

page.hide "add_comment_link_for_post_#{@post.id}"

form_div = "new_comment_form_for_post_#{@post.id}"

page.hide form_div

page.replace_html form_div, :partial => "new"

page.visual_effect :blind_down, form_div

end

end

end

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 603 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

As in Section 16.2.1, we replace the HTML inside the new comment form div with the form
partial, but we add the additional script.aculo.us effect using

page.visual_effect :blind_down, form_div

Note that we hide the form before making it blind down; otherwise, it flashes into existence
briefly before disappearing and then sliding down.
In the process of adding the visual effect (and avoiding repeated code using the
form_div variable), the inline RJS has gotten a little bloated. We can clean up our action by
putting the RJS inside an rjs file, in much the same way that we put embedded Ruby in rhtml
files. Using files for RJS is conceptually cleaner since RJS is logically part of the view—
including RJS in a responder violates MVC by mixing views and controllers. In fact, inline RJS
came after RJS files, and was intended for quick one-liners, not blocks of code.
The naming convention for RJS files is the same as for rhtml files, with rjs in place of
rhtml. This means that we can put the RJS for the new responder a file called new.rjs:
file: app/views/comments/new.rjs

page.hide "add_comment_link_for_post_#{@post.id}"

form_div = "new_comment_form_for_post_#{@post.id}"

page.hide form_div

page.replace_html form_div, :partial => "new"

page.visual_effect :blind_down, form_div

Notes that there is no render :update do |page| here; when using RJS files, Rails
automatically creates a page object for us.
With new.rjs thus defined, new is cleaned up considerably:
file: app/controllers/comments_controller.rb

def new

@comment = Comment.new

respond_to do |format|

format.js # new.rjs

end

end

In this case, the Rails REST implementation invokes new.rjs by default in response to a
request for JavaScript, just as it would invoke new.rhtml for format.html. In fact, because

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 604 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

REST can return different formats, we can respond to both kinds of requests appropriately
using the same URL; see Section 16.3.4 for an example.

16.3.2. Two More Effects
We'll complete the comments machinery for RailsSpace blogs by adding a couple of final
visual effects. After comment creation, we'll have the form "blind up"[13] and then highlight
the new comment:

[13] We could get the same blind up/down behavior for the comment form by using visual_effect :toggle_blind in both new.rjs and create.rjs.

file: app/views/comments/create.rjs
page.visual_effect :blind_up, "new_comment_form_for_post_#{@post.id}"

page.replace_html "comments_for_post_#{@post.id}",

:partial => "comments/comment",

:collection => @post.comments

page.show "add_comment_link_for_post_#{@post.id}"

page.visual_effect :highlight, "comment_#{@comment.id}", :duration => 2

The final effect here is the (in)famous yellow fade technique pioneered by 37signals[14] to show
which parts of an Ajaxified page were updated by a particular operation.

[14] This is the company that, as a happy side-effect of its Basecamp application, gave us Ruby on Rails.

As with new, putting the RJS commands for create in an RJS file simplifies the action:
file: app/controllers/comments_controller.rb

def create

@comment = Comment.new(params[:comment])

@comment.user = User.find(session[:user_id])

@comment.post = @post

respond_to do |format|

if @comment.duplicate? or @post.comments << @comment

format.js # create.rjs

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 605 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

end

end

Finally, we'll delete comments using a "puff" effect (Fig. 16.5):
file: app/views/comments/destroy.rjs

page.visual_effect :puff, "comment_#{@comment.id}"

Figure 16.5. With the puff effect, a deleted comment grows in size as it fades away.

[View full size image]

Here we've put the effect in an RJS file even though it's only one line, so we have to update
the destroy action:
file: app/controllers/comments_controller.rb

def destroy

 @comment = Comment.find(params[:id])
 .
 .
 .
 respond_to do |format|
 format.js # destroy.rjs
 end
end

Though this effect is only a one-liner, and hence is a good candidate for inline RJS, some
people prefer to use RJS files for consistency. Also, since one-liners have a tendency to
become n-liners, it's not a bad idea to start with an RJS file from the start.

16.3.3. A Cancel Button
Since users might decide not to comment on a post after all, as a final touch to Ajax comments
we'll add a "Cancel" button to the form. Having to handle a submission from this button on
the back-end would be annoying, but thankfully we don't have to if we use
button_to_function:
file: app/views/comments/_new.rhtml

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 606 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyX2FmZ3Bqc3BoMTUvYzZ1Zl8udHBsX2k-

<% remote_form_for(:comment, :url => comments_path) do |form| %>

<fieldset>

<legend>New Comment</legend>

<%= form.text_area :body, :rows => 10, :cols => 50 %>

<%= submit_tag "Create" %>

<%= button_to_function "Cancel" do |page|

page.visual_effect :blind_up, "new_comment_form_for_post_#{@post.id}"

page.show "add_comment_link_for_post_#{@post.id}"

end %>

</fieldset>

<% end %>

This creates a button that, rather than submitting to the server, simply calls the JavaScript
function defined by the given block, which in this case blinds up the form and restores the
comment link.

16.3.4. Degrading Gracefully
Before we leave blog comments, there's one more issue we'd like to deal with: what if our
users don't have JavaScript enabled in their browsers? (Some individuals and especially
companies turn off JavaScript for security purposes.) You will sometimes hear that making
a non Ajax version of an application—that is, degrading gracefully to basic HTML constructs
in the absence of JavaScript—is easy, but don't believe it. Supporting JavaScript-disabled
browsers is a pain, and in many cases it's probably not worth the effort, but it is possible. In
this section we'll take the first steps toward a non-Ajax version of blog comments.
We'll start by adding an href option to the comment link so that non-JavaScript users can
click through to a comment form page:
file: app/views/posts/_post.rhtml

.

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 607 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

<div id="add_comment_link_for_post_<%= post.id %>">

<%= link_to_remote "Add a comment",

{ :url => new_comment_path(post.blog, post),

:method => :get },

:href => new_comment_path(post.blog, post) %>

</div>

.

.

.

Clicking on this link sends a GET request that expects an HTML response, so we can handle
it by defining a new.rhtml template:
file: app/views/comments/new.rhmtl

<div class="post">

 <div class="post_title"><%= sanitize @post.title %></div>
 <div class="post_body"><%= sanitize @post.body %></div>
</div>
<%= render :partial => "comment", :collection => @post.comments %>
<%= render :partial => "new" %>

Since our Comments controller is RESTful, the new URL is the same as for the Ajax interface
—we just respond to a different format:
file: app/controllers/comments_controller.rb

def new

@comment = Comment.new

respond_to do |format|

format.html # new.rhtml

format.js # new.rjs

end

end

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 608 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

def create

@comment = Comment.new(params[:comment])

@comment.user = User.find(session[:user_id])

@comment.post = @post

respond_to do |format|

if @comment.duplicate? or @post.comments << @comment

format.html { redirect_to profile_for(@post.blog.user) }

format.js # create.rjs

else

format.html { redirect_to new_comment_url(@post.blog, @post) }

format.js { render :nothing => true }

end

end

end

Here the create responder just redirects back to the profile for the blog's owner upon
successful comment creation[15].

[15] This won't work well for comments on posts after the first page. It would be better to redirect to the post itself, but the Posts controller's show responder is currently
protected; we would have to add show as an exception in the Posts controller's before filter. We told you supporting non-JavaScript browsers was a pain.

These non-Ajax comments are far from complete. To finish the implementation, we would
have to handle submissions from the cancel button and change all of the delete links to
buttons. As it currently stands, though, non-JavaScript users can at least add comments, so
they're not completely out of luck.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 609 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

16.4. Debugging and Testing
Because so much of Ajax depends on code executed inside the client's browser, debugging
and testing it is rather difficult. Nevertheless, given the importance of Ajax, and its tight
integration with Rails, we expect that Ajax testing will continue to improve rapidly. Especially
keep an eye on Another RJS Testing System (ARTS)[16], which we hope will evolve into a full-
fledged Ajax testing system integrated into Rails. We also recommend taking a look at
Selenium, a general test framework for web applications capable of testing Ajax (among
other things). For the time being, we can do a serviceable job debugging and testing Ajax
using the development server log and functional tests.

[16]http://glu.ttono.us/articles/2006/05/29/guide-test-driven-rjs-with-arts. We had trouble getting ARTS to install, so we haven't used it in RailsSpace.

16.4.1. Another Look at New
The Rails Ajax support is configured to give helpful alerts for JavaScript errors, but
unfortunately Ruby exceptions don't show up in the browser. In other words, when
something goes wrong in your application due to an XHR request, the result is usually a silent
error.
For example, consider the new responder, where we use a partial to return a form suitable
for creating new comments. Suppose that we accidentally typed the wrong name for the
partial to render, with "gnu" instead of "new":
file: app/views/comments/new.rjs

page.hide "add_comment_link_for_post_#{@post.id}"

form_div = "new_comment_form_for_post_#{@post.id}"

page.hide form_div

page.replace_html form_div, :partial => "gnu"

page.visual_effect :blind_down, form_div

Now, when we click on the "Add a comment" link, Rails tries to render the gnu partial, which
raises an exception since the partial doesn't exist. Unfortunately, the error is silent from the
perspective of the browser; as far as the user can tell, the link has simply stopped working.
The way out of this quagmire is to check the server log. If you are running the development
server in a terminal window, it's already dumping the log output to the screen; if not, you
can look at the log file in log/development.log. This is what you'll see:

ActionView::ActionViewError (No rhtml, rxml, rjs or delegate template

found for comments/_gnu in script/../config/../app/views):

.

.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 610 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://glu.ttono.us/articles/2006/05/29/guide-test-driven-rjs-with-arts

.

This identifies our problem as a simple spelling error, which is easy to fix.
The bottom line is that, when developing Ajax applications, it pays to keep an eye on the log.
Even if you don't have the terminal window on your desktop, the log should be the first place
you look if your Ajax application mysteriously stops responding.

16.4.2. Testing Ajax with xhr
Though we don't have tests for the specific Ajax behaviors and effects, we can simulate Ajax
requests to the actions and modifiers in the Comments controller and verify that they
respond sensibly. The tests in this section parallel those for the Posts controller from Section
15.4, with one crucial difference: instead of accessing the responders using one of the
traditional HTTP methods (post, get, put, or delete), we use the xhr function to simulate
an XHR request.
As with posts, the generated fixture file is sufficient for our needs:
file: test/fixtures/comments.yml

one:

id: 1

user_id: 1

post_id: 1

body: MyText

created_at: 2007-01-17 15:30:30

two:

id: 2

user_id: 1

post_id: 1

body: MyText

created_at: 2007-01-17 15:30:30

The xhr function takes the HTTP method as an argument, allowing us to send the right
request types to test the REST responders. Following the example set by the Posts controller

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 611 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

tests (Section ??), the Comments controller test suite hits each responder with the right HTTP
method and verifies that the basic functionality is correct:
file: test/functional/comments_controller_test.rb

require File.dirname(__FILE__) + '/../test_helper'

require 'comments_controller'

Re-raise errors caught by the controller.

class CommentsController; def rescue_action(e) raise e end; end

class CommentsControllerTest < Test::Unit::TestCase

fixtures :comments, :posts, :blogs, :users, :specs

def setup

@controller = CommentsController.new

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

@user = users(:valid_user) authorize @user

@comment = comments(:one)

@post = posts(:one)

@valid_comment = { :user_id => @user, :post_id => @post,

:body => "Comment Body"}

end

def test_new_comment

xhr :get, :new, :blog_id => @post.blog, :post_id => @post

assert_response :success

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 612 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

end

def test_create_comment

old_count = Comment.count

xhr :post, :create, :blog_id => @post.blog,

:post_id => @post,

:comment => @valid_comment

assert_response :success

assert_equal old_count+1, Comment.count

end

def test_delete_comment

old_count = Comment.count

 xhr :delete, :destroy, :blog_id => @comment.post.blog,
 :post_id => @comment.post,
 :id => @comment
 assert_response :success
 assert_equal old_count-1, Comment.count
 end

 # Make sure unauthorized users can't delete comments and get redirected.
 def test_unauthorized_delete_comment
 @request.session[:user_id] = 2 # Unauthorized user
 xhr :delete, :destroy, :blog_id => @comment.post.blog,
 :post_id => @comment.post,
 :id => @comment
 assert_response :redirect
 assert_redirected_to hub_url
 end
end

Running the suite gives

> ruby test/functional/comments_controller_test.rb

Loaded suite test/functional/comments_controller_test

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 613 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Started

....

Finished in 0.275006 seconds.

4 tests, 7 assertions, 0 failures, 0 errors

17. What next?

In a sense, a web application such as RailsSpace is never done—we could always add a feature
or two, polish the interface, or improve the test suite—but at some point we have to start
thinking about showing it to the world[1]. In this chapter, we briefly discuss several subjects
related to application deployment. We can't do the subject justice here, but we can get you
started by mentioning some of the techniques and software needed for deploying an
application successfully. This is a bit of a whirlwind tour; if the discussion seems rather dense
and technical at times, think of it as prime fodder for web searches. Deployment is a rapidly
evolving aspect of Rails, and the web is the best and most up-to-date resource.

[1] Of course, before their public debut most sites could use a real web designer at some point, too—this is certainly the case for RailsSpace.

17.1. Deployment Considerations
Rails is weakly coupled to the details of any particular deployment architecture—virtually all
the deployment-specific aspects of Rails happen automatically upon changing the
environment from development to production[2]. This is a boon for developers, since we don't
have to worry about the particulars of the deployment system when writing the application.
But because deployment involves a completely separate layer between the Rails application
and the outside world, many different setups work, resulting in a dizzying array of choices.

[2] Its powerful routing facilities also play a role by making Rails largely independent of server URL rewriting tools such as Apache's mod_rewrite.

We'll start this section with a brief overview of some of the software and hardware options
to consider. Then we'll bite off a piece small enough to chew by showing how to run the local
version of RailsSpace in production mode, which is the proper Rails environment for deployed
applications. Finally, we'll introduce the basics of Rails administration, followed by a brief
discussion of Rails scalability.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 614 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

17.1.1. Software and Hardware Options
When we said that Rails deployment is evolving rapidly, we weren't kidding—when we
started writing RailsSpace not too many months ago, probably the most common
deployment architecture used the lighttpd webserver with FastCGI to process requests. The
lightweight and fast lighttpd (often pronounced "lighty") is still a popular choice, but instead
of FastCGI most new Rails deployments as of this writing use Mongrel[3], often running behind
the workhorse Apache webserver.

[3] Recall from Chapter 2 that you can use either WEBrick or Mongrel as the Rails development server; unlike WEBrick, Mongrel is also suitable for production use.

For sites with significant traffic, it pays to run multiple Mongrel processes, with load-
balancing to distribute requests. One approach uses the mod_proxy_balance module for
Apache to distribute the load between different Mongrels. Another possibility is to combine
lighttpd or Apache with Pound or Nginx, which are both high-performance proxy servers/
load balancers[4]. At least one decision is easy: it's virtually unheard-of to deploy a Rails
application to anything but a Unix server of some kind, with Linux being the most popular
choice. (If most of your experience is with Windows, be prepared to learn Linux, FreeBSD, OS
X, or some other flavor of Unix.)

[4] Nginx is actually a full HTTP server as well. Since most of its documentation is in Russian, Nginx is relatively obscure, but we've heard great things about it, and it's currently
being used by several Rails hosting companies.

Of course, the right software choices also depend on the hardware situation. If you choose
a shared host, they will probably make the choices for you, which could be a huge win if you
just want to focus on writing the application. Because of the explosive growth of Rails, there
are now many shared hosting options, and a web search for "Rails shared host" provides a
cornucopia of possibilities. If you're deploying to your own server (or to the Linux box in your
hallway[5]), the only real universal nowadays seems to be Mongrel. The lighttpd server is under
heavy development and can be a bit unstable, while Nginx may be a bit exotic for some, so
for most purposes we recommend Apache for the main server. Apache is mature and well-
documented, and in any case many people need to keep using it to serve legacy applications.

[5] In theory, most DSL and cable modem IP numbers are dynamic, but in practice they are often quite stable, so if you just want to deploy a small personal application this
actually isn't a bad option.

17.1.2. Running in Production Mode
So far in RailsSpace, we've run our application in two different environments: development
and test. Deployed applications run in a third mode, production. The purpose of this section
is to practice the steps needed to deploy RailsSpace to a production server by running the
application in a production environment on our local machine.
Like the development and test environments, the production environment requires a
corresponding database. In fact, you may recall seeing a reference to production in one of
our previous encounters with database.yml:
file: config/database.yml

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 615 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

development:

adapter: mysql

database: rails_space_development

username: root

password:

host: localhost

test:

adapter: mysql

database: rails_space_test

username: root

password:

host: localhost

production:

adapter: mysql

database: rails_space_production

username: root

password: <your password>

host: localhost

We can tell Rails how to talk to our production database by filling in the corresponding
password field. (For a true deployment, it is probably a good idea to create a special database
user just for RailsSpace, with appropriately restricted privileges.)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 616 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Of course, to talk to the production database we first need to have one, so create the
rails_space_production database using the mysqladmin command (or your favorite
GUI):

> mysqladmin create rails_space_production --user=root --password=my_password

Then fill in the database table structure by running the migration with the Rails environment
variables set to production:

> rake db:migrate RAILS_ENV=production

Finally, kill the current development server (if there is one) and start a new server in a
production environment using the -e flag:

> ruby script/server -e production

You can see the effect by visiting the RailsSpace home page at http://localhost:3000;
comparing Fig. 17.1 and Fig. 6.3, you can see that the debug information no longer appears
at the bottom of the page. This is because of the line

<% if ENV["RAILS_ENV"] == "development" %>

before the debug information in the site layout (Section 4.2.5). Now that we're running in
production mode, the debug information automatically disappears.

Figure 17.1. The RailsSpace homepage in a production environment, with no debug links.

[View full size image]

It's important to note that, in order to incorporate any changes to the application code, in
production mode you must always restart the server. Part of what's nice about the
development server is that it loads changes immediately, but this has a performance penalty,
so this feature is turned off in a production environment.

17.1.3. Scaling
Unless your application is likely to get an unexpected spike in traffic from Slashdot or Digg,
worrying about scaling is probably premature optimization—a single server running a single
Mongrel process is probably sufficient for the vast majority of Rails applications. Some sites

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 617 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyZWJ0ZHBnYXNobjExYy83b19fXy5nbGp1cF9p

do become wildly popular, though, and in this case Rails makes it easy to scale to high volume
by using a shared-nothing architecture. This involves pushing the maintenance of state (such
as sessions) into a single location (typically a database) so that the individual Rails servers
and processes don't share any data. This means that, on a single server, you can just keep
adding new Mongrels until you run out of CPU cycles, at which point you can start adding
new servers, each with its own complement of Mongrels.
One way to take some of the load off of your web and database servers is to use caching. Rails
has a powerful caching system to help avoid the computational and database-access
expense of generating dynamic HTML. Rails supports three types of caching: page caching,
action caching, and fragment caching. Page caching is the most efficient but least flexible
form of caching; it simply involves storing the results of rendering a particular page as a plain
HTML file, which can be served directly via the webserver as static content. Action caching
is similar to page caching, with the results of a particular action being cached; the difference
is that action caching allows a controller's filters to be run, so that, for example, cached pages
can be protected by an authentication before filter.
Because the RailsSpace layout changes depending on login status, we can use neither page
nor action caching on our site, but we could use fragment caching, which lets us cache
fragments of content. For example, we could cache the blog entries for a particular user, so
that the entries would be dynamically generated when first hit but would be cached for
subsequent requests. Of course, we still need to update the blogs if users make new entries,
and Rails lets us expire fragments to handle this case. Since the frequency of blog requests is
probably higher than the frequency of new posts, caching could still give a significant
performance boost.
Even with caching to minimize database hits, the database itself might eventually become
the application bottleneck. At this point, you could convert to a memcached session store[6],
add extra database servers in a master-slave setup, or use some of the VC cash you've no
doubt raised by this point to hire yourself a real database/scaling guru[7]. The bottom line is
that there's nothing special about scaling Rails applications; by using a shared-nothing
architecture, Rails simply reduces scaling to a previously solved problem.

[6]memcached is a distributed memory caching system originally developed for the blogging site Live-Journal.

[7] This solution is called VC cashing.

One important scaling issue has nothing to do with serving pages, but rather is concerned
with development and deployment. When developing any large software project, it's
practically essential to use a version control system, which allows developers to track changes
as the code evolves, while making collaboration easier by automatically merging changes.
The most popular version control system among Rails developers is almost certainly
Subversion, which the authors used to develop RailsSpace. We also recommend darcs, a
powerful distributed revision control system based on the linear algebra of software patches
[8].

[8] We are not making this up. Originally developed by physicist David Roundy, darcs was influenced by the operator algebras of quantum mechanics. (Incidentally, back
in high school David Roundy and Michael Hartl once joined forces to win the Gold Medal in Physics at the California State Science Olympiad.)

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 618 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

A particularly convenient complement to a version control system is Capistrano, a system
for the automated deployment and rollback of application source code. Capistrano is
designed for deployment to multiple servers, with each server being updated with code from
a central repository—with a single command, you can push the application you have been
running on your modest development machine to a cluster of load-balanced production
servers[9]. Though optimized for multi-server deployments, Capistrano is nice enough that
many people use it even for single-server deployments. Capistrano assumes that you're using
version control, and it plays nice with both Subversion and darcs (among others).

[9] No doubt running lighttpd/Nginx/Apache/mod_proxy_balance/Pound/FastCGI/Mongrel/whatever.

In summary, here are our current recommendations for a production Rails application:

- Linux/Apache/mod_proxy_balance/Mongrel for deployment
- Caching and shared nothing and for scaling
- Subversion or darcs for version control
- Capistrano for automated deployment and rollback

17.1.4. Administration Basics
When running an application in production mode, sometimes you want to inspect the Rails
internals, and whether you want to track down a bug, view a list of recently updated records,
or perhaps update a user's information by hand, the console may be the only tool you need.
(You are welcome, of course, to write an administrative interface for the site as well; writing
a front-end for RailsSpace administration would be a good thing to put on our to-do list.)
Since the console runs in development mode by default, in order to run the console in a
production environment we have to give it an explicit production option:

> ruby script/console production

When you do this, be careful—using the console in production mode means that any changes
you save using Active Record will affect the production database. If you want to be able to
inspect your application without having to worry about clobbering production data, you can
run the console in a sandbox[10]:

[10] Running in a sandbox has nothing to do with production per se; you can run the console in a sandbox in development mode as well.

> ruby script/console production --sandbox

Loading production environment in sandbox.

Any modifications you make will be rolled back on exit.

>>

This way, you don't risk doing any permanent damage to your application.
Another key tool for Rails administration is the production log file. This is the production
version of the development log file development.log mentioned briefly in Section 4.3

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 619 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

(Fig. 4.4) and again in Section 16.4.1; both are located (along with a test log) in the log/
directory. Rails records tons of useful information to the log file, so inspecting it is good for
seeing what's going on in your application. For example, this is the log entry when Foo Bar
registers (trimmed for brevity):
file: log/production.log

Processing UserController#register (for 127.0.0.1 at ...

Session ID: f20ed0fdfb7db3297095bf2bc5bbc10f

Parameters: {"user"=>{"password_confirmation"=>"bazquux",

"screen_name"=>"foobar", "password"=>"bazquux",

"email"=>"foobar@example.com"}, "commit"=>"Register!",

"action"=>"register", "controller"=>"user"}

params[:user]: {"password_confirmation"=>"bazquux",

"screen_name"=>"foobar", "password"=>"bazquux",

"email"=>"foobar@example.com"}

Redirected to http://localhost:3000/user

Completed in 0.02988 (33 reqs/sec) | DB: 0.02114 (70%) | 302 Found ...

Processing UserController#index (for 127.0.0.1 at...

Session ID: f20ed0fdfb7db3297095bf2bc5bbc10f

Parameters: {"action"=>"index", "controller"=>"user"}

Rendering within layouts/application

Rendering user/index

Completed in 0.46929 (2 reqs/sec) | Rendering: 0.27744 (59%) |...

The log keeps track of which controllers and actions are involved, as well as redirects and
view renders.
The log keeps track of other things, including SQL queries and, perhaps most importantly,
errors. For example, trying to hit the page http://localhost:3000/fdsa gives a long series of
error messages and a 404 Page Not Found error:

Processing ApplicationController#index (for 127.0.0.1 at...

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 620 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Session ID: f20ed0fdfb7db3297095bf2bc5bbc10f

Parameters: {}

ActionController::RoutingError (no route found to match "/fdsa"

with {:method=>:get}):

.

.

.

<long error trace>

.

.

.

Rendering /usr/local/lib/ruby/gems/1.8/gems/actionpack-...

Since Ruby exceptions show up in the log, by analyzing it we can discover bugs in our
application.
When keeping tabs on an application, it's common to run a tail process to monitor the end
of the log file continuously:

tail -f log/production.log

This won't work on Windows machines since the tail command is Unix-specific. (We warned
you that no one ever deploys Rails apps to anything but Unix!)
Of course, it's good that errors show up in the log, but in general we don't want to expose
errors to users. To this end, Rails serves up customizable error pages instead of showing users
an error—though you wouldn't guess that from the error page for an invalid request (Fig.
17.2). It turns out that for local requests, Rails assumes you want to see the full error, but for
any outside requests Rails returns the contents of public/404.html (for Page Not Found
errors) or public/500.html (for application errors). By editing these files, we could
arrange for a customized RailsSpace error message. If you are running your development
machine (in production mode) on a local network, you can see the public error pages by
typing in the IP number rather than localhost, as shown in Figs. 17.3 and Fig. 17.4.

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 621 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Figure 17.2. The local error page for an invalid request.

Figure 17.3. The public error page for file not found errors (404).

[View full size image]

Figure 17.4. The application error page (500) (in this case, a syntax error in the routes.rb file).

[View full size image]

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 622 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyZXJfbGFwYV9zNGgxM2MvNzA0X3Jnb3RwZXJfLl9panBn
http://safari.oreilly.com//getfile?item=ODA3ZzBkLzR0c2NpZ3AvbS85ZTE3MnI4OTM4YWFyZXJfbGFwYV9zNWgxNGMvNzAwX3Jnb3RwZXJfLl9panBn

17.2. More Ruby and Rails
This brings us to the end of RailsSpace. The application we have built is substantial, but in
some ways we have only scratched the surface of Ruby on Rails. Active Record, for example,
is still full of tricks like observers, acts_as_tree, and polymorphic associations. Ajax and
RJS alone could fill a book, while the full implications of REST are only beginning to be
understood. And, of course, Ruby itself is a full-strength programming language; gaining a
deeper understanding of Ruby can do your Rails programming a world of good.
So, where should you go from here? We've already recommended Programming Ruby and
The Ruby Way. Though it's not available as of this writing, we're also excited about the
forthcoming book The Rails Way by Obie Fernandez. Unsurprisingly, the internet is also a rich
source of Rails material, with web searches for subjects of interest (including, crucially, error
messages) typically producing voluminous and relevant results[11]. There is an especially
thriving community of discussion groups and technical blogs covering Rails topics; we won't
even try to list all (or even any) of them, but search and ye shall find.

[11] This wasn't always the case, and it is testament to the growing popularity of Rails that nowadays search engines know that Rails programmers aren't particularly interested
in trains.

We hope that RailsSpace has helped you get on track toward realizing your web dreams with
Ruby on Rails. Now go forth and conquer the world!

RailsSpace: Building a Social Networking Website with Ruby on Rails Page 623 Return to Table of Contents

RailsSpace: Building a Social Networking Website with Ruby on Rails
RailsSpace: Building a Social Networking Website with Ruby on Rails By Michael Hartl, Aurelius Prochazka ISBN:
9780321480798 Publisher: Addison Wesley Professional

Prepared for olivier oudry, Safari ID: olivier.oudry@gmail.com

Print Publication Date: 2007/06/22 User number: 833378 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

	Part I: Foundations
	2. Getting Started
	2.1. Preliminaries
	2.1.1. Setting up your development environment
	2.1.2. Running with
	2.1.3. Development Server

	2.2. Our First Pages
	2.2.1. Generating a Controller
	2.2.2. The Site Controller
	2.2.3. Rails URLs
	2.2.4. Changing the Route

	2.3. Rails Views
	2.3.1. Embedded Ruby

	2.4. Layouts
	2.4.1. ERb, Actions, and Instance Variables
	2.4.2. Recap: Slicing up a Page
	2.4.3. Adding Navigation
	2.4.4. Hashes
	2.4.5. Symbols
	2.4.6. Polishing up
	2.4.7. Some Matters of Style
	2.4.8. Polishing Navigation
	2.4.9. Finding Things for Yourself

	2.5. Developing with Style

	3. Modeling users
	3.1. Creating the User Model
	3.1.1. Setting up the Database
	3.1.2. Migrations and the User Model
	3.1.3. The first User Migration
	3.1.4. Raking the Migration

	3.2. User Model Validations
	3.2.1. The Console
	3.2.2. A Simple Validation
	3.2.3. Validations in Action
	3.2.4. Improving Validations
	3.2.5. Full-Strength Validations
	3.2.6. Magic Columns

	3.3. Further Steps to Ensure Data Integrity (?)

	4. Registering users
	4.1. A User Controller
	4.2. User Registration: The View
	4.2.1. The Registration View: Appearance
	4.2.2. Understanding the Registration View
	4.2.3. Blocks
	4.2.4. Registration Form Refinements
	4.2.5. Fun with Forms—And

	4.3. User Registration: The Action
	4.3.1. Form Error Messages
	4.3.2. Flash
	4.3.3. The Finished
	4.3.4. A Hub Stub

	4.4. Linking in Registration
	4.4.1. Helper Files

	4.5. An Example User

	5. Getting started with testing
	5.1. Our Testing Philosophy
	5.2. Test Database Configuration
	5.3. Site Controller Testing
	5.3.1. A Nontrivial Test
	5.3.2. Test Overkill?

	5.4. Registration Testing
	5.4.1. Running Functional Tests
	5.4.2. Basic Registration Tests
	5.4.3. Testing Successful Registration
	5.4.4. Testing Unsuccessful Registration
	5.4.5. Running the Tests
	5.4.6. More Registration Tests?

	5.5. Basic User Model Testing
	5.5.1. Basic Validation Testing

	5.6. Detailed User Model Testing
	5.6.1. Testing Uniqueness
	5.6.2. Testing Screen Name Length
	5.6.3. Detour: "Use the Console, Luke."
	5.6.4. Testing Password Length
	5.6.5. Testing Regexps
	5.6.6. Running all Tests

	6. Logging in and out
	6.1. Maintaining State with Sessions
	6.1.1. Setting up Database Sessions

	6.2. Logging in
	6.2.1. Tracking Login Status
	6.2.2. Registration Login
	6.2.3. Debugging with the Session Variable
	6.2.4. Login View and Action
	6.2.5. Testing Valid Login
	6.2.6. Testing Invalid Login

	6.3. Logging Out
	6.3.1. Testing Logout
	6.3.2. Testing Navigation

	6.4. Protecting Pages
	6.4.1. Protecting Pages the Stupid Way
	6.4.2. Protecting Pages the Smart Way
	6.4.3. Testing Protection

	6.5. Friendly URL Forwarding
	6.5.1. The
	6.5.2. Friendly Login Forwarding
	6.5.3. Friendly Register Forwarding
	6.5.4. Friendly Testing

	6.6. Refactoring Basic Login
	6.6.1. Logged In?
	6.6.2. Log In!
	6.6.3. Log Out!
	6.6.4. Clear Password!
	6.6.5. Unduplicated Form Handling
	6.6.6. Unduplicated Friendly Forwarding
	6.6.7. Sanity Check

	7. Advanced login
	7.1. So you Say you Want to be Remembered?
	7.1.1. A Remember Me Box
	7.1.2. A Remember Me Attribute
	7.1.3. The Remember Me Cookie

	7.2. Actually Remembering the User
	7.2.1. An Authorization Cookie
	7.2.2. Remembering that we Remembered
	7.2.3. Updating
	7.2.4. A More Secure Cookie
	7.2.5. The Finished (?) Functions

	7.3. Remember Me Tests
	7.3.1. Updated Login Tests
	7.3.2. Updated Logout Test

	7.4. Advanced Tests: Integration Testing
	7.4.1. Testing Cookie Remembering: The First Cut
	7.4.2. Testing the Test: A Cautionary Tale
	7.4.3. Some Reflections on Rails Testing

	7.5. Refactoring Redux
	7.5.1. Refactoring Remember
	7.5.2. Refactoring Forget
	7.5.3. Just Two More Bits of Polish
	7.5.4. The Fully Refactored Login Function
	7.5.5. Some Parting Thoughts

	8. Updating user information
	8.1. A Non-Stub Hub
	8.2. Updating the eMail Address
	8.3. Updating Password
	8.3.1. Handling Password Submissions

	8.4. Testing User Edits
	8.4.1. Test Helpers
	8.4.2. Testing the Edit Page
	8.4.3. An Advanced Test

	8.5. Partials
	8.5.1. Two Simple Partials
	8.5.2. A More Advanced Partial
	8.5.3. A Wrinkle, Then Done
	8.5.4. Updating Login and Register

	Part II: Building a social network
	9. Personal profiles
	9.1. A User Profile Stub
	9.1.1. Profile URLs
	9.1.2. Profile Controller and Actions

	9.2. User Specs
	9.2.1. Generating the Spec Model
	9.2.2. The Spec Model
	9.2.3. Tying Models Together

	9.3. Editing the User Specs
	9.3.1. Spec Controller
	9.3.2. An HTML Utility
	9.3.3. The Spec Edit View
	9.3.4. Protecting Specs
	9.3.5. Testing Specs

	9.4. Updating the User Hub
	9.4.1. The New Hub View
	9.4.2. A Spec Box
	9.4.3. Named Routes and the Profile URL
	9.4.4. The Hub Main Content

	9.5. Personal FAQ: Interests and Personality
	9.5.1. The FAQ Model
	9.5.2. The FAQ Controller
	9.5.3. Editing the FAQ
	9.5.4. Adding the FAQ to the Hub
	9.5.5. FAQ Tests

	9.6. Public-Facing Profile

	10. Community
	10.1. Building a Community (Controller)
	10.2. Setting up Sample Users
	10.2.1. Collecting the Data
	10.2.2. Loading the Data

	10.3. The Community Index
	10.3.1.
	10.3.2. The
	10.3.3. The Alphabetical Index
	10.3.4. Displaying Index Results

	10.4. Polishing Results
	10.4.1. Adding Pagination
	10.4.2. A Results Summary

	11. Searching and browsing
	11.1. Searching
	11.1.1. Search Views
	11.1.2. Ferret
	11.1.3. Searching with
	11.1.4. Adding Pagination to Search
	11.1.5. An Exception to the Rule

	11.2. Testing Search
	11.3. Beginning Browsing
	11.3.1. The Browse Page
	11.3.2. Find by A/S/L (Hold the L)

	11.4. Location, Location, Location
	11.4.1. A Local Database of Geographic Data
	11.4.2. Using GeoData for Location Search
	11.4.3. Location Names
	11.4.4. Adding Browse Validation
	11.4.5. The Final Community Home Page

	12. Avatars
	12.1. Preparing for Avatar Upload
	12.1.1. Adapting a Model
	12.1.2. Avatar Upload Page
	12.1.3. An Avatar Partial

	12.2. Manipulating Avatars
	12.2.1. ImageMagick and
	12.2.2. The
	12.2.3. Adding Validations
	12.2.4. Deleting Avatars
	12.2.5. Testing Avatars

	13. Email
	13.1. Action Mailer
	13.1.1. Configuration
	13.1.2. Password Reminder
	13.1.3. Linking and Delivering the Reminder
	13.1.4. Testing the Reminder

	13.2. Double-Blind eMail System
	13.2.1. Email Link
	13.2.2.
	13.2.3. Email Message
	13.2.4. Testing Double-Blind eMail

	14. Friendships
	14.1. Modeling Friendships
	14.1.1. Friendships in the Abstract
	14.1.2. Friendship Model
	14.1.3. Creating Pending Friendships
	14.1.4. Friendship Request
	14.1.5. Completing the Friendship Model
	14.1.6. Testing the Friendship Model

	14.2. Friendship Requests
	14.2.1. Friendship Request Link
	14.2.2. Controlling the Request

	14.3. Managing Friendships
	14.3.1.
	14.3.2. Hub Friendships
	14.3.3. Friendship Actions
	14.3.4. Testing Friendship Requests

	15. RESTful blogs
	15.1. We Deserve a REST Today
	15.1.1. REST and CRUD
	15.1.2. URL Modifiers
	15.1.3. An Elephant in the Room
	15.1.4. Responding to Formats and a Free API

	15.2. Scaffolds for a RESTful Blog
	15.2.1. The First RESTful Resource
	15.2.2. Blog Posts
	15.2.3. The Posts Controller

	15.3. Building the Real Blog
	15.3.1. Connecting the Models
	15.3.2. Blog and Post Routing
	15.3.3. Posts Controller, for Real
	15.3.4. Blog Management
	15.3.5. Creating Posts
	15.3.6. Showing Posts
	15.3.7. Editing Posts
	15.3.8. Publishing Posts
	15.3.9. One Final Niggling Detail

	15.4. RESTful Testing
	15.4.1. Default REST Functional Tests
	15.4.2. Two Custom Tests

	16. Blog comments with Ajax
	16.1. RESTful Comments
	16.1.1. Comments Resource
	16.1.2. Comment Model and Associations
	16.1.3. The Comments Controller and a Preemptive Partial
	16.1.4. Routing Comments

	16.2. Beginning Ajax
	16.2.1. New Comments
	16.2.2. Comment Creation
	16.2.3. Destroying Comments

	16.3. Visual Effects
	16.3.1. RJS Files and the First Effect
	16.3.2. Two More Effects
	16.3.3. A Cancel Button
	16.3.4. Degrading Gracefully

	16.4. Debugging and Testing
	16.4.1. Another Look at
	16.4.2. Testing Ajax with

	17. What next?
	17.1. Deployment Considerations
	17.1.1. Software and Hardware Options
	17.1.2. Running in Production Mode
	17.1.3. Scaling
	17.1.4. Administration Basics

	17.2. More Ruby and Rails

